Question 1

a. $\quad A B C D$ is a parallelogram with $A B / / D C$. If angle $A=(5 x+5)$ and angle $B=(4 x+4)$, find the value of x and the measures of all the angles of parallelogram $A B C D$.
b. In $\triangle A B C, \angle B=90^{\circ}, A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}$.

Find the radius of the semi circle described on the $A C$ and the area of the figure (take $\pi=3.14$)

[3]
c. Find the solution of following simultaneous equation graphically $x+2 y-4=0 ; 2 x-y-3=0$

Question 2

a. ABCD is a kite. $\angle B A C=30^{\circ}, \angle C B D=58^{\circ}$ find $x, y \wedge z$

[3]
b. The outer surface of a wooden box of dimension $75 \mathrm{~cm} \times 60 \mathrm{~cm} \times 40 \mathrm{~cm}$ has to be painted. If the cost of painting 100 Sq cm is Rs 15 , find the total cost of painting the box.
c. The image of triangle $O X Y$ under reflection in the origin O is the triangle $O X^{\prime} Y^{\prime}$, where $X^{\prime}(-3,-4)$ is the image of X and $Y^{\prime}(0,-5)$ is the image of Y.
i. Draw a diagram to represent this information and write down the co-ordinates of X and Y.
ii. What kind of figure is the quadrilateral $X Y X^{\prime} Y^{\prime}$? Give a reason for your answer.
iii. Find the co-ordinates of $X^{\prime \prime}$, the image of X under reflection in the origin, followed by reflection in the y-axis.
iv. Find the co-ordinates of $Y^{\prime \prime}$, the image of Y under reflection in x-axis, followed by reflection in the origin.

Question 3

a. Cards marked with numbers $1,2,3,4, \ldots, 20$ are well shuffled \& a card is drawn at random. What is the probability that the number on the card is:
i. A prime number?
ii. Divisible by 3?
iii. A perfect square?
b. Without plotting rotate the points $p(3,1)$ and $Q(7,9)$ by 90° clockwise and anticlockwise and also rotate it by 180°.
c. The shape of a tile used in construction is an octagon as shown in the figure. Find the area of the tile

[4]

Question 4

a. Find the magnitude of $\angle C A B$ from the given figure. $A B$ is diameter

[3]
b. Well is dug with 14 m diameter and depth of 10 m . The earth taken out is spread evenly on a plot of land 100 m long and 7 m wide. Find the height of the platform thus formed by the earth. [3]
c. Solve the given inequation, $-1 \leq 3+4 x<23$ where $x \in R$, \& graph the solution on number line [4]

Question 5

a. Find two consecutive whole numbers, such that 3 times the first number plus 7 times the second is 217 .
b. The dimensions of a piece of iron in the shape of cuboid are $270 \mathrm{~cm} \times 100 \mathrm{~cm} \times 64 \mathrm{~cm}$. If the cuboid is melted and cast into cubes of side 12 find the number of cubes obtained.
c. Three coins are tossed together. Write all possible outcomes. Now, find the probability of getting:
i. Exactly two heads
ii. At least two heads
iii. All tails
iv. At least one tail

Question 6

a. If the mean of $6,4,7, a$ \& 10 is 8 . Find the value of ' a '.
b. The adjoining pie chart shows the percentage of buyers of five brands of shampoo P, Q, T, S and R
i. Which is most and least popular brand of shampoo?
ii. What is the central angle of the sector of shampoo S ?
iii. What is the number of persons purchasing shampoo P, if the number of person purchasing shampoo T is 270 ?

c. Solve $10 y=7 x-4$ and $12 x+18 y=1$ by eliminating one variable by substitution method

Question 7

a. The marks obtained by 19 students of a class are given below:
$27,36,22,31,25,26,33,24,37,32,29,28,36,35,27,26,32,36 \& 28$. Find:
i. Median
ii. Mean
iii. Mode
b. Draw a histogram \& hence estimate the mode for following frequency distribution:

Class	$0-$ 10	$10-$ 20	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60
Frequenc y	2	8	10	5	4	3

c. The sum of the numerator and the denominator of a fraction are equal to 7. Four times the numerator is less than 5 times the denominator. Find the fraction.

Question 8

a. Survey was conducted on the favorite pet animal of 72 people. The findings are as follows. Represent this data by a pie chart.

Pet Animal	Dog	Cat	Rabbit	Fish
Number of person	27	18	9	18

b. The marks of the students of a class in mathematics test are as follows:
$15,24,17,12,27,29,15,16,28,23,21,18,11,29,27,30,23,21,24,13,15,25,21,18,15,19,9,18,25,10,22$, $11,17,19,25,27,21,18,15,24,21,22,19,28,29$.
Taking class interval $0-5,5-10 \ldots$ make grouped frequency distribution table.
c. If $25-4 x \leq 16$. Find:
i. Smallest value of x, when x is a real number
ii. Smallest value of x, when x is an integer.

Ans key

Question 1

a. $\quad A B C D$ is a parallelogram with $A B / / D C$. If angle $A=(5 x+5)$ and angle $B=(4 x+4)$, find the value of x and the measures of all the angles of parallelogram $A B C D$.
Ans. angle $A+$ angle $B=(4 x+4)+(5 x+5)=180$

$$
\begin{aligned}
& 9 x+9=180 \\
& x+1=20 \\
& x=19 \\
& \text { Angle } A=(5 x+5)=100^{\circ} \\
& B=(4 x+4)=80^{\circ} \\
& C=10^{\circ} \\
& D=80^{\circ} .
\end{aligned}
$$

b. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}, \mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$.

Find the radius of the semi circle described on the $A C$ and the area of the figure (take $\pi=3.14$)
Ans.
Solution: $\mathrm{AC}=\sqrt{6^{2}+8^{2}}=10 \mathrm{~cm}$ (using pythagoras theorem)
\therefore radius $=5 \mathrm{~cm}$

[3]

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times b \times h=\frac{1}{2} \times 6 \times 8=24 \mathrm{~cm}^{2}$
Area of semicircle $=\frac{1}{2} \pi r^{2}=\frac{1}{2} \times 3.14 \times 5 \times 5$

$$
=39.25 \mathrm{~cm}^{2}
$$

c. Find the solution of following simultaneous equation graphically $x+2 y-4=0 ; 2 x-y-3=0$ Ans. on the graph

Question 2

a. $\quad \mathrm{ABCD}$ is a kite. $\angle B A C=30^{\circ}, \angle C B D=58^{\circ}$ find $x, y \wedge z$.

Ans. $\angle O=90^{\circ}$ i
$X=180^{\circ}-30^{\circ}-90^{\circ}=60^{\circ}$ (angle sum property of Δ)
$\mathrm{Z}=58$ ($\Delta \mathrm{BCD}$ is isosceles triangle)
$Y=180^{\circ}-z-90^{\circ}$ (angle sum property of Δ)
$=180^{\circ}-58^{\circ}-90^{\circ}=32^{\circ}$
b. The outer surface of a wooden box of dimension $75 \mathrm{~cm} \times 60 \mathrm{~cm} \times 40 \mathrm{~cm}$ has to be painted. If the cost of painting 100 Sq cm is Rs 15 , find the total cost of painting the box.

Ans. Solution: Since the outer surface of the box is to be painted, we need to find out its total surface area.

Given: $l=75 \mathrm{~cm}, b=60 \mathrm{~cm}, h=40 \mathrm{~cm}$
Total surface area of the box $=2(l b+b h+l h)$

$$
\begin{aligned}
& =2\{(75 \times 60)+(60 \times 40)+(75 \times 40)\} \mathrm{cm}^{2} \\
& =2\{4500+2400+3000\} \mathrm{cm}^{2} \\
& =(2 \times 9900) \mathrm{cm}^{2} \\
& =19,800 \mathrm{~cm}^{2} \\
& \text { Cost of painting the box }=₹ \frac{19,800 \times 15}{100}=₹ 2970
\end{aligned}
$$

c. The image of triangle $O X Y$ under reflection in the origin O is the triangle $O X^{\prime} Y^{\prime}$, where $X^{\prime}(-3,-4)$ is the image of X and $Y^{\prime}(0,-5)$ is the image of Y.
i. Draw a diagram to represent this information and write down the co-ordinates of X and Y.
ii. What kind of figure is the quadrilateral $X Y X^{\prime} Y^{\prime}$? Give a reason for your answer.
iii. Find the co-ordinates of $X^{\prime \prime}$, the image of X under reflection in the origin, followed by reflection in the y-axis.
iv. Find the co-ordinates of $Y^{\prime \prime}$, the image of Y under reflection in x-axis, followed by reflection in the origin.
Ans. solution On graph

Question 3

a. Cards marked with numbers $1,2,3,4, \ldots, 20$ are well shuffled \& a card is drawn at random. What is the probability that the number on the card is:
(i) A prime number?
(ii) Divisible by 3?
(iii) A perfect square?

Solution:
Total possible outcomes $=20$
i) Favourable outcome = prime number $=2,3,5,7,11,13,17,19$
No. of favourable outcome $=8$

$$
\begin{aligned}
\mathrm{P}\binom{\text { gettinga }}{\text { primeno. }} & =\frac{\text { No.of fa vourable ou tcome }}{\text { Total possible outcome }} \\
& =\frac{8}{20} \\
\therefore\binom{\text { gettinga }}{\text { primeno. }} & =\frac{2}{5}
\end{aligned}
$$

ii) Favourable outcome $=3,6,9,12,15,18$ No. of favourable outcome $=6$

$$
\begin{aligned}
\mathrm{P}\binom{\text { getting a no. }}{\text { divisible by } 3} & =\frac{\text { No. of fa vourable ou tcome }}{\text { Total possible outcome }} \\
& =\frac{6}{20} \\
\mathrm{P}\binom{\text { getting a no. }}{\text { divisible by } 3} & =\frac{3}{10}
\end{aligned}
$$

iii) Favourable outcome = perfect square

$$
=1,4,9,16
$$

No. of favourable outcomes $=4$

$$
\begin{aligned}
\mathrm{P}\binom{\text { gettinga }}{\text { perfectsquare }} & =\frac{\text { No.of favourable outcome }}{\text { Totalpossible outcome }} \\
& =\frac{4}{20} \\
\mathrm{P}\binom{\text { gettinga }}{\text { perfectsquare }} & =\frac{1}{5}
\end{aligned}
$$

b. Without plotting rotate the points $p(3,1)$ and $Q(7,9)$ by 90° clockwise and anticlockwise and also rotate it by 180°.
Ans. $p(3,1)$ and $Q(7,9)$ on rotation by 90° clockwise we get $p^{\prime}(1,-3)$ and $Q^{\prime}(9,-7)$
$p(3,1)$ and $Q(7,9)$ on rotation by 90° anti clockwise get $p^{\prime \prime}(-1,3)$ and $Q^{\prime \prime}(-9,7)$
$p(3,1)$ and $Q(7,9)$ on rotation by 180° we get p "' $(-3,-1)$ and Q '" $(-7,-9)$ c.
c. The shape of a tile used in construction is an octagon as shown in the figure. Find the area of the tile

Ans.
Solution: The octagon ABCDEFGH can be divided into three parts - two trapeziums
GDEF and HCBA and a rectangle GHCD as shown in Figure.
Area of trapezium GDEF $=\frac{1}{2} \times 6 \times(15+8) \mathrm{cm}^{2}$

$$
=69 \mathrm{~cm}^{2}
$$

Area of trapezium $\mathrm{HCBA}=$ Area of trapezium

 GDEF$$
=69 \mathrm{~cm}^{2}
$$

Area of rectangle $\mathrm{GHCD}=(15 \times 8) \mathrm{cm}^{2}=120 \mathrm{~cm}^{2}$

Question 4

a. Find the magnitude of $\angle C A B$ from the given figure.

Ans. $\angle A C B=90$ angle subtented by semicircle
$130=\angle A C B+\angle C A B$ (exsterior angle property)
$130=90+\angle C A B$
$\angle C A B=40$
b. A well is dug with 14 m diameter and depth of 10 m . The earth taken out is spread evenly on a plot of land 100 m long and 7 m wide. Find the height of the platform thus formed by the earth. [3]

Ans. Solution: Since the outer surface of the box is to be painted, we need to find out its total surface area.

Given: $l=75 \mathrm{~cm}, b=60 \mathrm{~cm}, h=40 \mathrm{~cm}$
Total surface area of the box $=2(l b+b h+l h)$
$=2\{(75 \times 60)+(60 \times 40)+(75 \times 40)\} \mathrm{cm}^{2}$
$=2\{4500+2400+3000\} \mathrm{cm}^{2}$
$=(2 \times 9900) \mathrm{cm}^{2}$
$=19,800 \mathrm{~cm}^{2}$
Cost of painting the box $=₹ \frac{19,800 \times 15}{109}=₹ 2970$
c. Solve the given inequation, $109 \leq 3+4 x<23$ where $x \in R$, \& graph the solution on number line [4]

Solution:

$$
\begin{aligned}
& -1 \leq 3+4 x<23 \\
& \text {... given } \\
& \therefore-1 \leq 3+4 x \quad \& \quad 3+4 x<23 \\
& -1 \leq 3+4 x \quad \& \quad 3+4 x<23 \\
& \therefore-1-3 \leq 4 x \quad 4 x \quad<23-3 \\
& \therefore-4 \leq 4 x \quad \therefore 4 x \quad<20 \\
& \text { i.e. } 4 x \leq-4 \quad \therefore x \quad<\frac{20}{4} \\
& \therefore x \geq-\frac{4}{4} \\
& \therefore \mathrm{x}<5 \\
& \therefore \mathrm{x} \geq-1 \quad \therefore \mathrm{x}<5 \\
& \therefore-1 \leq \mathrm{x}<5, \mathrm{x} \in \mathrm{R} \\
& \text { S.S. }=\{x:-1 \leq x<5, x \in R\}
\end{aligned}
$$

The graph of the solution is:

Question 5

a. Find two consecutive whole numbers, such that 3 times the first number plus 7 times the second is 217 .
Ans. $3 x+7(x+1)=217$
$3 x+7 x+7=217$

$$
\begin{gathered}
10 x=217-7 \\
10 x=210 \\
X=21
\end{gathered}
$$

So, smaller no is 21 and greater number is 22
b. The dimensions of a piece of iron in the shape of cuboid are $270 \mathrm{~cm} \times 100 \mathrm{~cm} \times 64 \mathrm{~cm}$. If the cuboid is melted and cast into cubes of side 12 find the number of cubes obtained.
Ans. Solution: Since the outer surface of the box
is to be painted, we need to find out its total surface area.

Given: $l=75 \mathrm{~cm}, b=60 \mathrm{~cm}, h=40 \mathrm{~cm}$
Total surface area of the box $=2(l b+b h+l h)$
$=2\{(75 \times 60)+(60 \times 40)+(75 \times 40)\} \mathrm{cm}^{2}$
$=2\{4500+2400+3000\} \mathrm{cm}^{2}$
$=(2 \times 9900) \mathrm{cm}^{2}$
c. Three coins are tossed togethe Write all possible outcomes. Now, find the probability of getting:

(ii) At least two heads
(iii) All tails
(iv)At least one tail

Solution:

When three coins are tossed together, the possible outcomes are:
\{HHH, HHT, HTT, TTT, TTH,
THH, THT, HTH\}
Total possible outcomes $=8$
i) Favourable outcome = exactly two heads
i.e. HHT, THH, HTH

No. of favourable outcome $=3$
$p\binom{$ gettingexactly }{ twoheads }$=\frac{\text { No. of favourable outcomes }}{\text { Totalpossibleoutcomes }}$
$p\binom{$ gettingexactly }{ two heads }$=\frac{3}{18}$
ii) Favourable outcome = at least two heads
i.e. HHH, HHT, THH, HTH

No. of favourable outcome $=4$
$p\binom{$ gettingat least }{ twoheads }$=\frac{\text { No.of favourable outcomes }}{\text { Totalpossible outcomes }}$
$p\binom{$ getting at least }{ twoheads }$=\frac{4}{18}=\frac{1}{2}$
iii) Favourable outcome = all tails
i.e. TTT

No. of favourable outcome $=1$

$$
\mathrm{p}(\text { gettingalltails })=\frac{\text { No.of favourableoutcomes }}{\text { Totalpossible outcomes }}
$$

$$
=\frac{1}{8}
$$

iv) Favourable outcome = at least one tail
i.e. HHT, HTH, THH, HTT, THT, TTH, TTT

No. of favourable outcome $=7$

$$
\begin{aligned}
\mathrm{p}\binom{\text { getting at least }}{\text { one tail }} & =\frac{\text { No. of favourable outcomes }}{\text { Totalpossible outcomes }} \\
& =\frac{7}{8}
\end{aligned}
$$

Question 6

a. If the mean of $6,4,7, a \& 10$ is 8 . Find the value of ' a '.

Solution:

$$
\begin{aligned}
\mathrm{n} & =5 \\
\sum \mathrm{x} & =6+4+7+\mathrm{a}+10 \\
& =27+\mathrm{a} \\
\text { Arithmetic Mean } & =8 \\
\text { Arithmetic Mean } & =\frac{\sum \mathrm{x}}{\mathrm{n}} \\
\therefore 8 & =\frac{27+\mathrm{a}}{5} \\
40 & =27+\mathrm{a} \\
\mathrm{a} & =40-27 \\
\therefore \mathrm{a} & =\underline{13}
\end{aligned}
$$

b. The adjoining pie chart shows the percentage of buyers of five brands of shampoo P, Q, T, S and R
i. Which is most and least popular brand of shampoo?
ii. What is the central angle of the sector of shampoo S?
iii. What is the number of persons purchasing shampoo P , if the number of person purchasing shampoo T is 270 ?

c. Solve $10 y=7 x-4$ and $12 x+18 y=1$ by eliminating one variable by substitution method

Ans. $y=\frac{7 x-4}{10}$
$12 x+18 \times \frac{7 x-4}{10}=1$
$120 x+126 x-72=10$
$246 x=86$
$x=82 / 246$
$x=1 / 3$ and
$y=-1 / 5$

Question 7

a. The marks obtained by 19 students of a class are given below:
$27,36,22,31,25,26,33,24,37,32,29,28,36,35,27,26,32,36 \& 28$. Find:
i. Median
ii. Mean
iii. Mode

Solution:

Ascending order of marks:
$22,24,25,26,26,27,27,28,28,29,31,32,32,33,35,35,36,36,37$
n = 19 (odd)
i) Median $=\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term

$$
\begin{aligned}
& =\left(\frac{19+1}{2}\right)^{\text {th }} \text { term } \\
& =\left(\frac{20}{2}\right)^{\text {th }} \text { term } \\
& =10^{\text {th }} \text { term } \\
\text { Median } & =\underline{29}
\end{aligned}
$$

iii) mode is 36 with $f=3$
b. Draw a histogram \& hence estimate the mode for following frequency distribution:

Class	$\begin{aligned} & 0- \\ & 10 \end{aligned}$	$\begin{aligned} & 10- \\ & 20 \end{aligned}$	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{aligned} & 30- \\ & 40 \end{aligned}$	$\begin{gathered} 40- \\ 50 \end{gathered}$	$\begin{aligned} & 50- \\ & 60 \end{aligned}$
Frequenc y	2	8	10	5	4	3

Solution:

From graph : Join AC \& BD Mode $=\underline{23}$

Join AC \& BD
Draw KL perpendicular axis
c. The sum of the numerator and the denominator of a fraction is equal to 7 . Four times the numerator is less than 5 times the denominator. Find the fraction.
Ans. let numerator be x and denominator be y
$X+Y=7$
$4 \mathrm{X}=5 \mathrm{Y}-8$
$4 \mathrm{X}-5 \mathrm{Y}=-8$
On solving
$X=3$ and $Y=4$

Question 8

a. Survey was conducted on the favorite pet animal of 72 people. The findings are as follows.

Represent this data by a pie chart.

Pet Animal	Dog	Cat	Rabbit	Fish
Number of person	27	18	9	18

Ans. on graph paper
b. The marks of the students of a class in mathematics test are as follows:
$15,24,17,12,27,29,15,16,28,23,21,18,11,29,27,30,23,21,24,13,15,25,21,18,15,19,9,18,25,10,22$, 11,17,19,25,27,21,18,15,24,21,22,19,28,29.
Taking class interval $0-5,5-10 \ldots$ make grouped frequency distribution table.
Ans.

Class interval	Tally marks	Frequency
$0-5$	0	0
$5-10$	1	1
$10-15$	1	5
$15-20$		
$20-25$	1	15
$25-30$		12
$30-35$		1

c. If $25-4 x \leq 16$. Find:
i) Smallest value of x, when x is a real number
ii) Smallest value of x, when x is an integer.

Solution:

$$
\begin{aligned}
25-4 x & \leq 16 \quad \ldots \text { given } \\
\therefore 25-16 & \leq 4 x \\
\therefore 9 & \leq 4 x \\
\text { i.e. } 4 x & \geq 9 \\
\therefore x & \geq \frac{9}{4} \\
& \\
\text { or } \quad x & \geq 2 \frac{1}{4} \\
x & \geq 2.25
\end{aligned}
$$

i) $\because x \in R$
S.S. $=\{x: x \geq 2.25, x \in R\}$

Smallest value of $x=2.25$
ii)
S.S. $=\{3,4,5, \ldots\}$

