Question 1

a. A pendulum completes 2 oscillations in 5 s . What is its time period and frequency? [2]
b. Why it is advised to tie the luggage with a rope on the roof of the buses?
c. State newton's law of action and reaction and law of gravitation.
d. A block of wood of volume $25 \mathrm{~cm}^{3}$ floats in water with $20 \mathrm{~cm}^{3}$ of its volume immersed. Calculate i. Density of wood(taking density of water $1 \mathrm{gcm}^{3}$) ii. Weight of the wooden block.
e. When dropped from same height a body reaches the ground quicker at poles than at equator. Why?

Question 2

a. Differentiate between distance and displacement.
b. The value of g remains same of all places on the earth surface. Is this statement true? Give reason for your answer.
c. A car starting from rest acquires a velocity $360 \mathrm{~ms}^{-1}$ in 0.1 hr . Find the acceleration in the car.
d. Determine the height of water that will exert a pressure of 60 kPa . (Density of water is $1000 \mathrm{~kg} \cdot \mathrm{~m}-3$ and $\mathrm{g}=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$)
e. A body starts with initial velocity of 10 m and acceleration 5 m . Find the distance covered by it in 5 s

Question 3

a. A force of 600 dyne acts on a body of mass 3 g . Determine the acceleration produced in SI units.
b. Why does the atmosphere exert pressure on the earth? State the pressure exerted by the atmosphere at mean sea level in SI units.
c. What do you mean by apparent weight? What is the apparent weight of a floating body?
d. A solid of density X is dropped into a liquid of density Y . The volume of the solid is A and the volume of the liquid displaced is B .
$\begin{array}{ll}\text { i. Write an equation for the upthrust acting on the solid in the above stated terms. } \\ \text { [1] } \\ \text { ii. What will be the relationship between } \mathrm{X}, \mathrm{Y}, \mathrm{A} \text { and } \mathrm{B} \text { for the body to float? } \\ \text { [1] } \\ \text { iii. } & \text { Draw a diagram to illustrate what will happen when } \mathrm{X}=\mathrm{Y} \text {. } \\ \text { iv. } & \text { State the principle of floatation. }\end{array}$

Question 4

a. Write the derived units for the following:
i. Work
ii. Thrust
iii. Frequency
iv. Speed.
b. A hockey stick exerts a force of 60 N on a stationary puck lying upon a frictionless ice field. The mass of the puck is 150 g and the force lasts for 0.1 s .
i. Determine the acceleration produced.
ii. Determine the total distance covered by the ball in the time for which the force lasts.
iii. Determine the velocity achieved by the puck.
iv. The puck is also frictionless. What distance does it cover in 1 second after it loses contact with the hockey stick?

