Question 1
a. $\quad(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2$
b A boy scored following marks in various class tests during a term ; each test being marked out of 20 . are $15,17,16,7,10,12,14,16,19,12,16$
1-What are his modal marks ?
2-What are his median marks ?
3-What are his mean marks ?
c. Draw a histogram for the following frequency distribution and hence find the mode.

CI	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$
Frequency	24	16	9	15	20

Question 2

a. Marks obtained (in mathematics) by students are given below.

60,67,52,76,50,51,74,45,46
i. Find the arithmetic mean.
ii. If marks of each student be increased by 4; what will be the new value of arithmetic mean.
b. Evaluate: $\frac{\cos 75^{\circ}}{\sin 15^{\circ}}+\frac{\sin 12^{\circ}}{\cos 78^{\circ}}-\frac{\cos 18^{\circ}}{\sin 72^{\circ}}$.
c. From a rectangular solid of metal 42 cm by 30 cm by 20 cm , a cylindrical cavity of diameter 14 cm \& depth 24 cm is drilled out. Find:
i) Surface area of remaining solid
ii) Volume of remaining solid
iii) Weight of material drilled out if it weighs 7 gm per cm^{3}

Question 3
a. From the following data ,
$25,10,40,88,45,60,77,36,18,95,56,65,7,0,38$ and 83. find :
i `Median
ii Upper quartile iii Inter-quartile range
b. The volume of a rectangular solid is 3600 cm 3 . If it is 20 cm long and 9 cm high, find its total surface area.
c. Construct a triangle $X Y Z$ with angle Y equals to 75 and $X Y=5.5 \mathrm{~cm}$ and $Y Z=6.5 \mathrm{~cm}$. and draw in circle in it.

Question 4

a. The mean of the numbers $6, x, 7, y$ and 14 is 8 . Express y in terms of x.
b. A rectangular container whose base is square of side 6 cm holds water up to 3 cm from the top. When a solid cube is placed in the water and is completely submerged, the water rises to the top and $17 \mathrm{~cm}^{3}$ of water overflows. Find the edge of the cube.
c. The marks of 200 students in a test were recorded as follows:

Marks \%	No. of students
$10-19$	7
$20-29$	11
$30-39$	20
$40-49$	46
$50-59$	57
$60-69$	37
$70-79$	15
$80-89$	7

Construct the frequency polygon of above frequency distribution.

Question 5

a. Construct a triangle $A B C$ with angle B equals to 90° and $A C=6.5 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. and draw circum circle on it.
b. 1-2[(tan 35/cot55) $]^{2}+[(\cot 55 / \tan 35)]^{2}-3[(\sec 30 / \operatorname{cosec} 60)]$
c. In each case given below find the value of $<A$, where $0 \leq A \leq 90$
i. $\quad \operatorname{Sin}(90-3 A) \operatorname{cosec} 42=1$
ii. $\quad \operatorname{Cos}(90-A) \sec 77=1$

3

Question 6
a. Draw an inscribing circle of a regular hexagon of side 5.8 cm and measure its radius.
b. If $2 \sin A-1=0$. Show that: $\sin 3 A=3 \sin A-4 \sin ^{3} A$.
c. The height to the nearest cm , of 30 men is given below:
$159,170,174,173,175,160,161,164,163,165164,171,162,170,177,185,181,180,175,165$, $186,174,168,168,176,176,165,175,167,180$ Using class intervals 155-160,160-165, ----draw up a grouped frequency distribution table and also find its cumulative frequency

Question 7

a. Evaluate: $3 \cos 80^{\circ} \operatorname{cosec} 10^{\circ}+2 \cos 59^{\circ} \operatorname{cosec} 31^{\circ}$.
b. The marks of 20 students in a test were as follows:
$2,6,8,9,10,11,11,12,13,13,14,14,15,15,15,16,16,18,19 \& 20$.
Calculate: (i) the mean, (ii) the median, (iii) the mode
c. The diagram represents a solid block of wood of length 50 cm . the cross section is trapezium $A B C D$ with $A B=10 \mathrm{~cm}, A D=6 \mathrm{~cm}$ and $C D=18 \mathrm{~cm}$.

Find: i. its volume ii total surface area

Question 8
a. A cylinder with radius 333 units and its volume is 868686 cubic units. Find the height of the cylinder.
b. Prove that $\frac{\cos A}{1+\sin A}+\tan A=\sec A$
c. Draw a histogram and hence estimate the mode for the following frequency distribution: [4]

Class	Frequency
$0-10$	2
$10-$	8
20	
$20-$	10
30	
$30-$	5
40	
$40-$	4
50	
$50-$	3
60	

Answer key (std 9 math final 16-17)

Question 1
a. $\quad(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2$

Solution:
L.H.S. $(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)$
$(1+\cos A \sin A-1 \sin A)(1+\sin A \quad \cos A-1 \cos A)$
$=\sin A+\cos A-1 \quad \sin A X \sin A+\cos A+1 \quad \cos A$
$=(\sin A+\cos A-1)(\sin A+\cos A+1) \quad \sin A \cos A$
$=(\sin 2 A)+\cos 2 A+2 \sin A \cos A-1 \sin A \cos A$
$=1+2 \sin A \cos A-1 \sin A \cos A$
$=2 \sin A \cos A \sin A \cos A$
b A boy scored following marks in various class tests during a term ; each test being marked out of 20 . are $15,17,16,7,10,12,14,16,19,12,16$
1 -What are his modal marks ?
2-What are his median marks ?
3-What are his mean marks ?
Solution-
1- Arranging the data in ascending order 7,10,12,12,14,15,16,16,17,19
1-modal marks 16 (maximum occurrence)
2- median marks $11+1 / 2=6$ th term $=15$
3- total marks154 (addition of all) mean marks
Mean $=\sum \mathrm{fixi} / \sum \mathrm{fi}$
$=154 / 11=14$.
c. Draw a histogram for the following frequency distribution and hence find the mode.
[4]

CI	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$
Frequency	24	16	9	15	20

Question 2
a. Marks obtained (in mathematics) by students are given below.

60,67,52,76,50,51,74,45,46
i. Find the arithmetic mean.
ii. If marks of each student be increased by 4; what will be the new value of arithmetic mean.

Ans.
i. $\quad x^{\prime}=x_{1}+x_{2}+x_{3}+\cdots---x_{n} / n$
$=60+67+52+76+50+51+74+45+56 / 9$
=531/9
=59
ii. If marks of each student be increased by 4; the new value of arithmetic mean will be $=59+4=63$
b. Evaluate: $\frac{\cos 75^{\circ}}{\sin 15^{\circ}}+\frac{\sin 12^{\circ}}{\cos 78^{\circ}}-\frac{\cos 18^{\circ}}{\sin 72^{\circ}}$.

Solution:

$$
\begin{aligned}
& \frac{\cos 75^{\circ}}{\sin 15^{\circ}}+\frac{\sin 12^{\circ}}{\cos 78^{\circ}}-\frac{\cos 18^{\circ}}{\sin 72^{\circ}} \\
&= \frac{\cos 75^{\circ}}{\cos (90-15)^{\circ}}+\frac{\sin 12^{\circ}}{\sin (90-78)^{\circ}}-\frac{\cos 18^{\circ}}{\cos (90-72)^{\circ}} \\
&= \frac{\cos 75^{\circ}}{\cos 75^{\circ}}+\frac{\sin 12^{\circ}}{\sin 12^{\circ}}-\frac{\cos 18^{\circ}}{\cos 18^{\circ}} \\
&= 1+1-1 \\
&=2-1 \\
&= 1
\end{aligned}
$$

c. From a rectangular solid of metal 42 cm by 30 cm by 20 cm , a cylindrical cavity of diameter

14 cm \& depth 24 cm is drilled out. Find:
i) Surface area of remaining solid
ii) Volume of remaining solid
iii) Weight of material drilled out if it weighs 7 gm per cm^{3}

Solution:
For rectangular solid(cuboid):
Length $(I)=42 \mathrm{~cm}$
Width (b) $=30 \mathrm{~cm}$
Height (h) $=20 \mathrm{~cm}$
For conical cavity:
Diameter $=14 \mathrm{~cm}$
14
Radius $\left(r_{c}\right)=\frac{14}{2}=7 \mathrm{~cm}$
i) Surface area of remaining solid
$=$ TSA of cuboid + CSA of cylinder - Area of base of cylinder
$=2[\mathrm{lb}+\mathrm{bh}+\mathrm{lh}]+2 \pi \mathrm{rh}-\pi \mathrm{r}_{\mathrm{c}}^{2}$
$=2[42 \times 30+30 \times 20+20 \times 42]+\pi r_{c}\left[2 h-r_{c}\right]$
$=2[1260+600+840]+\frac{22}{7} \times 7[40-7]$

$$
\begin{aligned}
& =2[2700]+22 \times 33 \\
& =5400+726 \\
& =\underline{6126 \mathrm{~cm}^{2}}
\end{aligned}
$$

ii) Volume of remaining solid
$=$ Volume of cuboid - Volume of cylinder
$=\quad l \times \mathrm{b} \times \mathrm{h}-\pi \mathrm{r}^{2} \mathrm{~h}$
$=(42 \times 30 \times 20)-\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24$
$=25200-3696$
$=\underline{21504 \mathrm{~cm}^{3}}$
iii) Weight of material drilled out $=$ Weight of cone

$$
\begin{aligned}
& =6126 \times 7 \\
& =42882 \mathrm{gm}
\end{aligned}
$$

\therefore Weight of material drilled out $=42.882 \mathrm{~kg}$

Question 3

a. From the following data ,
$25,10,40,88,45,60,77,36,18,95,56,65,7,0,38$ and 83. find :
i `Median
ii Upper quartile
iii Inter-quartile range
Solution-
Arranging the data in ascending order, we get
0,7,10,18,25,36,38,40,45,56,60,65,77,83,88,95
Median $=40+45 / 2=42.5$
2-Upper quartile=
=3n/4
$=3 \times 16 / 4$
$=12$ th term $=65$
3-Lower quartile=
=n/4
$=16 / 4$
=4 th term =18
Inter-quartile range= Upper quartile- Lower quartile=47
b. The volume of a rectangular solid is 3600 cm 3 . If it is 20 cm long and 9 cm high, find its total surface area.
Ans. breadth $=\frac{3600}{180}=20 \mathrm{~cm}$
TSA $=2[20 \times 9+9 \times 20+20 \times 20]$
$=2(180+180+400)$
= 2X 760
$=1520 \mathrm{CM}^{2}$
c. Construct a triangle $X Y Z$ with angle Y equals to 75 and $X Y=5.5 \mathrm{~cm}$ and $Y Z=6.5 \mathrm{~cm}$. and draw in circle in it.
Ans. construction of triangle 1 m
Construction of 2 angle bisector 1 m
Drawing in circle 1m
Question 4
a. The mean of the numbers $6, x, 7, y$ and 14 is 8 . Express y in terms of x.

Solution- Numbers of terms $=5$
Mean= 8
Sum of numbers= $5 \times 8=40-----------------1$
As sum of numbers $=6+x+7+y+14-----------2$
From 1 and 2
b. A rectangular container whose base is square of side 6 cm holds water up to 3 cm from
the top. When a solid cube is placed in the water and is completely submerged, the water rises to the top and $17 \mathrm{~cm}^{3}$ of water overflows. Find the edge of the cube.
[3]
Ans volume of cube = volume of empty space in cuboid $+17 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\text { Side }^{3} & =1 \times \mathrm{b} \times \mathrm{h}+17 \mathrm{~cm}^{3} \\
& =6 \times 6 \times 3+17 \mathrm{~cm}^{3} \\
& =117+17 \mathrm{~cm}^{3} \\
\text { Side }^{3} & =125 \\
\text { Side } & =5 \mathrm{~cm}
\end{aligned}
$$

c. The marks of 200 students in a test were recorded as follows:

Marks \%	No. of students
$10-19$	7
$20-29$	11
$30-39$	20
$40-49$	46
$50-59$	57
$60-69$	37
$70-79$	15
$80-89$	7

Construct the frequency polygon of above frequency distribution.

Question 5

a. Construct a triangle $A B C$ with angle B equals to 90° and $A C=6.5 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. and draw circum circle on it.
Ans. construction of triangle 1 m
Construction of side bisector 1 m
Drawing circle 1m
b. $\quad 1-2[(\tan 35 / \cot 55)]^{2}+[(\cot 55 / \tan 35)]^{2}-3[(\sec 30 / \operatorname{cosec} 60)]$

Ans

$$
\begin{aligned}
& 2[(\cot 55 / \cot 55)]^{2}+[(\tan 35 / \tan 35)]^{2}-3[(\operatorname{cosec} 30 / \operatorname{cosec} 60)] \\
& 2+1-3 \\
& =0
\end{aligned}
$$

c. In each case given below find the value of $<A$, where $0 \leq A \leq 90$
i. $\quad \operatorname{Sin}(90-3 A) \operatorname{cosec} 42=1$
ii. $\operatorname{Cos}(90-A) \sec 77=1$

Solution:

i. $\quad \sin (90-3 A) \operatorname{cosec} 42=1$
L.H.S-

Sin $(90-3 A) \times 1 / \sin 42=1$
$\operatorname{Sin}(90-3 A) / \sin 42=1$
90-3A/42=1
$90-3 A=42$
$-3 A=-48$
$A=16$
ii. $\operatorname{Cos}(90-\mathrm{A}) \sec 77=1$
$\operatorname{Cos}(90-\mathrm{A}) \mathrm{X} 1 / \cos 77=1$
$\operatorname{Cos}(90-A) / \cos 77=1$
(90-A)/77=1
$(90-A)=77$
$-A=-13$
$A=13$

Question 6

a. Draw an inscribing circle of a regular hexagon of side 5.8 cm and measure its radius.

Ans. 4 angles of 120 1m
Any two angle bisector 1 m
In circle and radius 1 m
b If $2 \sin A-1=0$. Show that: $\sin 3 A=3 \sin A-4 \sin ^{3} A$.
Solution:

$$
\begin{aligned}
2 \sin A-1 & =0 \\
2 \sin A & =1 \\
\therefore \sin A & =\frac{1}{2}
\end{aligned}
$$

But $\sin 30^{\circ}=\frac{1}{2}$

$$
\begin{aligned}
\therefore \sin A & =\sin 30^{\circ} \\
\therefore A & =30^{\circ}
\end{aligned}
$$

Now, L.H.S. $=\sin 3 A$
$=\sin 3(30)$
$=\sin 90^{\circ}$
L.H.S. $=1$

$$
\begin{align*}
\text { R.H.S. } & =3 \sin \mathrm{~A}-4 \sin ^{3} \mathrm{~A} \\
& =3 \sin 30^{\circ}-4 \sin ^{3} 30^{\circ} \\
& =3\left(\frac{1}{2}\right)-4\left(\frac{1}{2}\right)^{3} \\
& =\frac{3}{2}-4 \times \frac{1}{8} \\
& =\frac{3}{2}-\frac{1}{2} \\
& =\frac{3-1}{2} \\
& =\frac{2}{2} \\
\text { R.H.S. } & =1 \tag{2}
\end{align*}
$$

from (1) \& (2)
\therefore L.H.S. $=$ R.H.S. \quad. hence proved.
c. The height to the nearest cm , of 30 men are given below:
$159,170,174,173,175,160,161,164,163,165164,171,162,170,177,185,181,180,175,165186$,174,168,168,176,176,165,175,167,180
Using class intervals 155-160,160-165,-----draw up a grouped frequency distribution table[4]
Ans.

Height (in cm $)$	Tally mark	No. of person
$155-$ 160		1
$160-$ 165		6
$165-$ 170		6
$170-$ 175		6
$175-$ 180		6
$180-$ 185		3
$185-$		2
190		30
total		

Question 7

a. Evaluate: $3 \cos 80^{\circ} \operatorname{cosec} 10^{\circ}+2 \cos 59^{\circ} \operatorname{cosec} 31^{\circ}$.

Solution:
$3 \cos 80^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \cos 59^{\circ} \cdot \operatorname{cosec} 31^{\circ}$

```
\(=3 \sin (90-80)^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \sin (90-59)^{\circ} \operatorname{cosec} 31^{\circ}\)
\(=3 \sin 10^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \sin 31^{\circ} \cdot \operatorname{cosec} 31^{\circ}\)
\(=3 \times 1+2 \times 1\)
\(\ldots \sin \theta \cdot \operatorname{cosec} \theta=1\)
\(=3+2\)
= 5
```

b. The marks of 20 students in a test were as follows:
$2,6,8,9,10,11,11,12,13,13,14,14,15,15,15,16,16,18,19 \& 20$.
Calculate: (i)the mean, (ii) the median, (iii) the mode
Solution:
i) $\sum \mathrm{x}=2+6+8+9+10+11+11+12+13+13+14+14+15+15+15+16+16+$ $18+19+20$.

$$
\sum \mathrm{x}=257
$$

$$
\mathrm{n}=20
$$

$$
\sum \mathrm{x}
$$

$$
\text { Mean }=n
$$

$$
=\frac{257}{20}
$$

$$
\text { Mean }=\underline{12.85}
$$

ii) $\quad \mathrm{N}=20$ (even)

$$
\frac{\left(\frac{\mathrm{n}}{2}\right)^{\text {th }} \operatorname{term}+\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }} \text { term }}{2}
$$

$$
\begin{aligned}
& =\frac{\left(\frac{20}{2}\right)^{\text {th }} \text { term }+\left(\frac{20}{2}+1\right)^{\text {th }} \text { term }}{2} \\
= & \frac{10^{\text {th }} \text { term }+11^{\text {th }} \text { term }}{2} \\
& =\frac{13+14}{2} \\
& =\frac{27}{2} \\
\text { Median } & =13.5
\end{aligned}
$$

iii) No. with highest frequency $=15$

$$
\therefore \text { Mode }=15
$$

c. The diagram represents a solid block of wood of length 50 cm . the cross section is trapezium $\quad A B C D$ with $A B=10 \mathrm{~cm}, A D=6 \mathrm{~cm}$ and $C D=18 \mathrm{~cm}$.

Find: i. its volume ii total surface area
Ans. Area of cross section $=1 / 2(10+18) 6=84 \mathrm{~cm}^{2}$
Volume of solid $=84 \times 50=4200 \mathrm{~cm}^{3}$
Perimeter of cross section $=10+6+18+10=44 \mathrm{~cm}$

$$
\begin{aligned}
\text { TSA } & =44 \times 50+2 \text { (area of trapezium }) \\
& =2200+2 \times 84 \\
& =2200+168 \\
& =2368 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 8

a. A cylinder with radius 333 units and its volume is 868686 cubic units. Find the height of the cylinder.
Ans. $868686=\frac{22}{7} \times 333 \times 333 \times h$

$$
\begin{aligned}
& \mathrm{h}=\frac{868686 \times 7}{22 \times 333 \times 333} \\
& \mathrm{~h}=\frac{6080802}{2439558}=2.493
\end{aligned}
$$

b. Prove that $\frac{\cos A}{1+\sin A}+\tan A=\sec A$
[3]
LHS $=\frac{\cos A}{1+\sin A}+\tan A$

$$
\begin{aligned}
& =\frac{\cos A}{1+\sin A}+\frac{\sin A}{\cos A} \\
& =\frac{\cos ^{2} A+\sin A+\sin ^{2} A}{(1+\sin A) \cos A} \\
& =\frac{1+\sin A}{(1+\sin A) \cos A}\left(\because \sin ^{2} A+\cos ^{2} A=1\right) \\
& =\frac{1}{\cos A} \\
& =\sec A
\end{aligned}
$$

c. Draw a histogram and hence estimate the mode for the following frequency distribution: [4]

Class	Frequency
$0-10$	2
$10-$	8
20	
$20-$	10
30	
$30-$	5
40	
$40-$	4
50	
$50-$	3

Solution - Value of mode= 23

which represents the modal clace dro........ "

