Section I

(Attempt all questions of this section)

Question 1

a. If $x=5-4 \sqrt{6}$, find:
(i) $\frac{1}{x}$
(ii) $x-\frac{1}{x}$
(iii) $x+\frac{1}{x}$
b. Solve the given pairs of simultaneous equations graphically $x-y+1=0 ; x+y=5$
c. Given $\cos \mathrm{A}=\frac{5}{13}$, evaluate $: \frac{\sin A-\cot A}{2 \tan A}$

Question 2

a. $\frac{\cos 75}{\sin 15}+\frac{\sin 12}{\cos 78}-\frac{\cos 18}{\sin 72}$
b. Solve the following equation for $\mathrm{x}: \frac{x-1}{2}-\frac{x+1}{2}=5-\mathrm{x}$
c. Rachna borrows ₹ 12,000 at 10% annum interest compounded half yearly. She repays ₹ 4000 at the end of every six months. Calculate the third payment she has to make at the end of 18 months in order to clear the entire loan.

Question 3

a. The difference between $\frac{3}{4}$ of a line and $\frac{2}{5}$ of the same line is 28 cm . Find the length of the line.
b. In the given figure, $A D=23 \mathrm{~cm}, \mathrm{BC}=\mathrm{CD}=15 \mathrm{cn}$ find AB
c. At what rate of interest per annum will a sum of $₹ 52,500$ earn a Cl of $₹ 5,100$ in one year? The interest is to be compounded half-yearly.

Question 4

a Simplify:

$$
\begin{equation*}
\left[1-\left\{1-(1-n)^{-1}\right\}^{-1}\right] \tag{3}
\end{equation*}
$$

b. If $a=x+1$ and $\frac{4 a-3}{2}-\frac{3 a-1}{5}=\frac{3}{2}$, find x.
c. The difference between Cl and SI on $₹ 75.00$ for 2 years is $₹ 12$ at the same rate of interest per annum. Find the rate of interest.

Section II

(Attempt any four questions from this section)

Question 5

a. Simplify:

b $\quad \frac{\cos \mathrm{A} \cot \mathrm{A}}{1+\sin \mathrm{A}}=\operatorname{cosec} A-1$
c. If $10 y=7 x-4$ and $12 x+18 y=1$; find the values of $4 x+6 y$ and $8 y-x$.

Question 6

a. The sum of the digits of a two digit number is 5 . If the digits are reversed, the number is reduced by 27 . Find the number.
b. Solve for $x: \log (x+5)+\log (x-5)=4 \log 2+2 \log 3$.
c. $\quad(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2$

Question 7

a. Evaluate: $\log _{10} 8+\log _{10} 25+2 \log _{10} 3-\log _{10} 18$ without using tables
b. Construct an equilateral triangle with altitude 4 cm
c. Solve $\frac{9}{x}-\frac{4}{y}=8 ; \frac{6}{x}+\frac{4}{y}=20$

Question 8

a. If $\mathrm{a}^{\mathrm{x}}=\mathrm{b}^{\mathrm{y}}=\mathrm{c}^{z}$ and $\mathrm{b}^{2}=\mathrm{ac}$, prove that: $\mathrm{y}=\frac{2 x z}{x+z}$
b. If $x=2 \sqrt{ } 3+2 \sqrt{ } 2$, find: (i) $\frac{1}{x} \quad$ (ii) $x+\frac{1}{x} \quad$ (iii) $\left(x+\frac{1}{x}\right)^{2}$
c. Use the following figure to show that AE and DF bisect each other.

Question 9

a. Factorize: $4(2 x-3 y)^{2}-8 x+12 y-3$.
b. If $3 x-\frac{4}{x}=4$ and $x \neq 0$; find $27 x^{3}-\frac{64}{x^{3}}$
c. $\quad A B C D$ is a quadrilateral in which $A D=B C$. E, F, G and H are the mid-points of $A B, B D$, $C D$ and $A C$ respectively. Prove that EFGH is a rhombus.

Question 10

a. If $y=\frac{7+3 \sqrt{ } 5}{7-3 \sqrt{5}}=a+b \sqrt{ } 5$; find the values of a and b.
b. If $m=\log 20$ and $n=\log 25$, find the value of x, so that: $2 \log (x-4)=2 m-n$.
c. Find the area of the triangular region whose vertices are the points of intersections of the graph $2 x+y=5, y=x-4$ and $y=5$

