Greenlawns School, Worli First Term Examination Mathematics

[3]

Section I

(Attempt all questions of this section)

Question 1

a.	If $x = 5 - 4\sqrt{6}$, find:					
	(i) $\frac{1}{x}$ (ii) $x - \frac{1}{x}$ (iii) $x + \frac{1}{x}$	[3]				
b.	Solve the given pairs of simultaneous equations graphically $x - y + 1 = 0$; $x + y = 5$	[3]				
c.	Given $\cos A = \frac{5}{13}$, evaluate $\frac{\sin A - \cot A}{2\tan A}$	[4]				

Question 2

э	cos75	sin 12	cos18	1	31
а.	sin15	cos 78	sin72	l	[0]

- **b.** Solve the following equation for x: $\frac{x-1}{2} \frac{x+1}{2} = 5 x$
- c. Rachna borrows ₹ 12,000 at 10% annum interest compounded half yearly. She repays ₹ 4000 at the end of every six months. Calculate the third payment she has to make at the end of 18 months in order to clear the entire loan. [4]

Question 3

- **a.** The difference between $\frac{3}{4}$ of a line and $\frac{2}{5}$ of the same line is 28 cm. Find the length of the line. [3]
- **b.** In the given figure, AD = 23 cm, BC = CD = 15 cn find AB
- c. At what rate of interest per annum will a sum of ₹ 62,500 earn a CI of ₹ 5,100 in one year?
 The interest is to be compounded half-yearly. [4]

Question 4

a Simplify:

$$\left[1 - \{1 - (1 - n)^{-1}\}^{-1}\right]$$

9n + 1

-1

- **b.** If a = x + 1 and $\frac{4a 3}{2} \frac{3a 1}{5} = \frac{3}{2}$, find x. [3]
- c. The difference between CI and SI on ₹ 75.00 for 2 years is ₹ 12 at the same rate of interest per annum. Find the rate of interest.
 [4]

Section II (Attempt any four questions from this section)

Question 5

a. Simplify: 3ⁿ⁺¹

$$3^{n(n-1)} \div (3^{n+1})^{(n-1)}$$
 [3]

$$\mathbf{b} \quad \frac{\cos A \cot A}{1+\sin A} = \csc A - 1 \tag{3}$$

c. If 10y = 7x - 4 and 12x + 18y = 1; find the values of 4x + 6y and 8y - x. [4]

Question 6

a.	The sum of the digits of a two digit number is 5. If the digits are reversed, the number is				
	reduced by 27. Find the number.	[3]			
b.	Solve for x: $\log (x + 5) + \log (x - 5) = 4 \log 2 + 2 \log 3$.	[3]			
c.	(1+cot A -cosec A)(1 +tan A +sec A)=2	[4]			

Question 7

a.	Evaluate: $\log_{10} 8 + \log_{10} 25 + 2 \log_{10} 3 - \log_{10} 18$ without using tables	[3]
b.	Construct an equilateral triangle with altitude 4 cm	[3]
C .	Solve $\frac{9}{x} - \frac{4}{y} = 8$; $\frac{6}{x} + \frac{4}{y} = 20$	[4]

[3]

Question 8

a. If
$$a^x = b^y = c^z$$
 and $b^2 = ac$, prove that : $y = \frac{2xz}{x+z}$ [3]

- If x = 2 $\sqrt{3}$ + 2 $\sqrt{2}$, find: (i) $\frac{1}{x}$ (ii) x + $\frac{1}{x}$ (iii) $\left(x + \frac{1}{x}\right)^2$ b. [3] [4]
- Use the following figure to show that AE and DF bisect each other. C.

Question 9

- Factorize: $4(2x 3y)^2 8x + 12y 3$. a.
- If $3x \frac{4}{x} = 4$ and $x \neq 0$; find $27x^3 \frac{64}{x^3}$ b.
- ABCD is a quadrilateral in which AD = BC. C. E, F, G and H are the mid-points of AB, BD, CD and AC respectively. Prove that EFGH is a rhombus.

[4]

[3]

[3]

Question 10

- If $y = \frac{7 + 3\sqrt{5}}{7 3\sqrt{5}} = a + b\sqrt{5}$; find the values of a and b. [3] a.
- If m = log 20 and n = log 25, find the value of x, so that: $2 \log (x 4) = 2 m n$. b. [3]
- Find the area of the triangular region whose vertices are the points of intersections of the C. graph 2x + y = 5, y = x - 4 and y = 5[4]
