Section A

(Attempt all the questions from this section)

Question 1

a. For the following set of data, find median: $10,75,3,81,17,27,4,48,12,47,9 \& 1$
b. construct a regular hexagon of side 4 cm .
c. In $\triangle A B C$ angle $A=60{ }^{\circ}$ and angle $C=40^{\circ}$ and bisector of angle $A B C$ meet $A C$ at point p. Show that $\mathrm{BP}=\mathrm{CP}$

Question 2

a. If $\mathrm{a}^{\mathrm{x}}=\mathrm{b}, \mathrm{b}^{\mathrm{y}}=\mathrm{c}$ and $\mathrm{c}^{z}=\mathrm{a}$, prove that: $\mathrm{xyz}=1$.
b. A sum of ` 9600 is invested for 3 years at 10% p.a. Cl
i) What is sum due at the end of first year?
ii) What is sum due at the end of second year?
iii) Hence write down the Cl for $3^{\text {rd }}$ year.
c. Solve for x :
(i) $\quad \log (x+5)+\log (x-5)=4 \log 2+2 \log 3$.
(ii) $\quad \log (x+3)-\log (x-3)=1$

Question 3

a. The difference of the squares of two consecutive even natural numbers is 92. Taking x as the smaller of the two numbers, form an equation in x and hence find the larger of the two numbers.
b. If $\log _{5} x=y$, find $5^{2 y+3}$ in terms of x.
c. A chord CD of a circle, whose centre is O, is bisected at P, by diameter $A B$. Given: $O A=O B=15 \mathrm{~cm}, O P=9 \mathrm{~cm}$ Calculate lengths of i) $C D$ ii) $A D$ iii) $C B$

Question 4

a. In the figure, O is centre of the circle

$$
\begin{equation*}
\& \angle A O C=160^{\circ} . \text { Prove: } 3 \angle y-2\left\llcorner x=140^{\circ}\right. \tag{3}
\end{equation*}
$$

b. Factorize: $4(2 x-3 y)^{2}-8 x+12 y-3$

c. Simplify
(ii) $\frac{3 \times 27^{n+1}+9 \times 3^{3 n-1}}{8 \times 3^{3 n}-5 \times 27^{n}}$
[4]

Section B

(Attempt any four questions from this section)

Question 5

a. On the side $A B$ and $A C$ of a triangle $A B C$, equilateral triangle $A B C$ and $A C E$ are drawn.
Prove that: i.
angle CAD = angle BAE
ii. $\quad C D=B E$
b. Two angles of eight sided polygon are 142° and 176 . If the remaining angles are equal to each other; find the magnitude of each of the equal angles.
c. Draw a histogram \& hence estimate the mode for following frequency distribution:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	2	8	10	5	4	3

Question 6

a. In a triangle $A B C ; A B=A C$.Show that the altitude $A D$ is median also.
b. Solve: $\frac{3}{x} \frac{2}{y}=0$ and $\frac{2}{x}+\frac{5}{y}=19$. Hence, find ' a ' if $y=a x+3$
c. The diagonals of a parallelogram $A B C D$ intersect at point O. Through O, a straight line is drawn parallel to $A B$ which meets $A D$ in P and $B C$ in Q.
Prove that:
(i) $\quad P$ and Q are mid-points of $A D$ and $B C$ respectively.
(ii) Area of $\triangle \mathrm{OAB}=\frac{1}{4}$ times the area of parallelogram ABCD .

Question 7

a. If $x=2 \sqrt{ } 3+2 \sqrt{ } 2$, find:
$\left.\begin{array}{lll}\text { (i) } \frac{1}{x} & \text { (ii) } x+\frac{1}{x} & \text { (iii) }\left(x+\frac{1}{x}\right.\end{array}\right)^{2}$
b. Marks obtained by 9 students are given below:
$60,67,52,76,50,51,74,45 \& 56$
i) Find arithmetic mean
ii) If marks of each student be increased by 4 ; what will be new arithmetic mean.
c. Solve: $\frac{2 x+1}{10}-\frac{3-2 x}{15}=\frac{x-2}{6}$, Hence, find y , if $\frac{1}{x}+\frac{1}{y}+1=0$.

Question 8

a. If $m=\log 20$ and $n=\log 25$, find the value of x, so that : $2 \log (x-4)=2 m-n$.
b. Construct a rhombus ABCD when one of its side is 6 cm and angle A is 60°
c. The sum of the digits of a two digit number is 7 . If the digits are reversed, the new number decreased by 2 , equals twice the original number. Find the number.

Question 9

a. The sum of two numbers is 9 and product is 20 find the sum of their
i. squares
ii. Cubes.
b. It is estimated that every year the value of a machine depreciates by 20% of its value at the beginning of the year. Calculate the original value of machine, if its value after two years is Rs. 10240.
c. In $\triangle A B C, D$ is a point of $A B$, such that $A D=\frac{1}{4} A B$ and E is a point on $A C$ such that $A E=\frac{1}{4} A C$. Prove that: $D E=\frac{1}{4} B C$.

Answer key

Section A
(Attempt all the questions from this section)

Question 1

a. For the following set of data, find median:
$10,75,3,81,17,27,4,48,12,47,9$ \& 1

Solution:

Asc. Order:
$3,4,9,10,12,15,17,27,47,48,75,81$

$$
\begin{aligned}
\mathrm{n} & =12 \text { (even) } \\
\text { Median } & =\frac{\left(\frac{\mathrm{n}}{2}\right)^{\text {th }} \text { term }+\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }} \text { term }}{2} \\
& =\frac{\left(\frac{12}{2}\right)^{\text {th }} \text { term }+\left(\frac{12}{2}+1\right)^{\text {th }} \text { term }}{2} \\
& =\frac{6^{\text {th }} \text { term }+7^{\text {th }} \text { term }}{2} \\
& =\frac{15+17}{2} \\
& =\frac{32}{2}
\end{aligned}
$$

$$
\text { Median }=\underline{16}
$$

b. construct a regular hexagon of side 4 cm .
c. In $\triangle A B C$ angle $A=60 \dot{\circ}$ and angle $C=40^{\circ}$ and bisector of angle $A B C$ meet $A C$ at point p. Show that $B P=C P$

Question 2

a. If $a^{x}=b, b^{y}=c$ and $c^{z}=a$, prove that: $x y z=1$.
b. A sum of ` 9600 is invested for 3 years at 10% p.a. Cl
i) What is sum due at the end of first year?
ii) What is sum due at the end of second year?
iii) Hence write down the Cl for $3^{\text {rd }}$ year.

Solution:
For $1^{\text {st }}$ year:

$$
\begin{aligned}
\mathrm{P} & =` 9600 \\
\mathrm{R} & =10 \% \text { p.a. } \\
\mathrm{T} & =1 \text { year } \\
\mathrm{I} & =\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
& =\frac{9600 \times 10 \times 1}{100} \\
\mathrm{I} & =` 960 \\
\mathrm{~A} & =\mathrm{P}+\mathrm{I} \\
& =9600+960=` 10560
\end{aligned}
$$

For $2^{\text {nd }}$ year:
$\mathrm{P}=` 10560$
$\mathrm{R}=10 \%$ p.a.
$\mathrm{T}=1$ year
$I=\frac{P \times R \times T}{100}$
$\mathrm{I}=\frac{10560 \times 10 \times 1}{100}={ }^{`} 1056$

$$
A=P+1
$$

$$
=10560+1056
$$

$$
=` 11616
$$

i) Sum due after 1 year $=` 1056$
ii) Sum due after 2 $2^{\text {nd }}$ year = 11616
iii) Req. Diff. $=11616-10560$
$={ }^{`} 1056$ (i.e. I_{2})
iv) Interest on difference for 1 year

$$
\mathrm{I}=\frac{1056 \times 10 \times 1}{100}=` 105.60
$$

v) $\quad\binom{\mathrm{CI}$ for }{$3^{\text {rd }}$ year }$=\left(\begin{array}{c}\mathrm{Cl} \text { for } \\ 2^{\text {nd }} \\ \text { year }\end{array}\right)+\binom{$ Int on it }{ for 1 year }
$=1056+105.60$
Cl for $3^{\text {rd }}$ year $=` 1161.60$
c. Solve for x :
(i) $\quad \log (x+5)+\log (x-5)=4 \log 2+2 \log 3$.
(ii) $\quad \log (x+3)-\log (x-3)=1[4]$

Question 3

a. The difference of the squares of two consecutive even natural numbers is 92. Taking x as the smaller of the two numbers, form an equation in x and hence find the larger of the two numbers.
b. If $\log _{5} x=y$, find $5^{2 y+3}$ in terms of x.
c. A chord CD of a circle whose centre is O, is
bisected at P , is bisected at P , by diameter AB .
Given: $\mathrm{OA}=\mathrm{OB}=15 \mathrm{~cm}, \mathrm{OP}=9 \mathrm{~cm}$
Calculate lengths of i) CD ii) AD iii) CB

Solution:

Statement

1) $\mathrm{CP}=\mathrm{PD}$
2) $\mathrm{OP} \perp \mathrm{CD}$
3) $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=15 \mathrm{~cm}$
line joining centre\& mid pt of chord is \perp^{r} to chord.
4) In rt $\triangle \mathrm{OPC}$,
$(\mathrm{OC})^{2}=(\mathrm{OP})^{2}+(\mathrm{CP})^{2} \quad$ Pythagoras theorem
5) $(\mathrm{Cp})^{2}=(\mathrm{OC})^{2}+(\mathrm{OP})^{2}$

$$
=(15)^{2}+(9)^{2} \quad \text { substitution }
$$

$(C P)^{2}=144 \quad$ Taking sq. root on both sides from (1) \& given

$$
\therefore \mathrm{CP}=12 \mathrm{~cm}
$$

6) $\mathrm{CD}=2 \times \mathrm{CP}=2 \times 12$

$$
\mathrm{CD}=24 \mathrm{~cm}
$$

7) $\mathrm{AP}=\mathrm{AO}+\mathrm{OP}, \mathrm{AP}=24 \mathrm{~cm}$
8) In rt $\triangle \mathrm{APD}$,

$$
\begin{array}{rlr}
(\mathrm{AD})^{2} & =(\mathrm{AP})^{2}+(\mathrm{PD})^{2} & \text { Pythagoras theoremFrom (1) (5) \& (7) } \\
& =(24)^{2}+(12)^{2} &
\end{array}
$$

$$
=576+144(\mathrm{AD})^{2}=720
$$

Taking Sq root on both sides

$$
\mathrm{AD}=26.83 \mathrm{~cm}
$$

($\mathrm{O}-\mathrm{P}-\mathrm{B}$)
10) In rt $\triangle B P C$,
$(\mathrm{BC})^{2}=(\mathrm{CP})^{2}+(\mathrm{PB})^{2}=(12)^{2}+(6)^{2}$

$$
=144+36
$$

$\therefore \mathrm{BC}=13.416$

Pythagoras theorem from $5 \& 9$

$$
(\mathrm{BC})^{2}=180
$$

Taking sq. root on both sides

$$
\mathrm{BC}=13.42 \mathrm{~cm}
$$

Question 4

a. In the figure, O is centre of the circle $\& \angle A O C=160^{\circ}$. Prove: $3 \angle y-2 L x=140^{\circ}$ [3]

Solution:

Statement

1) $\mathrm{LAOC}=2\llcorner A B C$
2) $160^{\circ}=2 x$

Reason

Central angle is twice the angle at remaining circumference
Substitution

$$
\therefore \mathrm{x}=80^{\circ}
$$

3) $\mathrm{LABC}+\mathrm{LADC}=180^{\circ}$
4) $x+y=180^{\circ}$

Opp angles of cyclic \square are supplementary substitution

$$
y=180^{\circ}-x^{\circ}
$$

$y=180^{\circ}-80^{\circ}$
from (2)

$$
y=100^{\circ}
$$

5) $3\llcorner y-2\llcorner x=3(100)-2(80) \rightarrow$ from $2 \& 4$

$$
\begin{gathered}
=300^{\circ}-160^{\circ} \\
3 \angle y-2\left\llcorner x=140^{\circ}\right.
\end{gathered}
$$

hence proved.
b. Factirise : $4(2 x-3 y)^{2}-8 x+12 y-3$
c. Simplify :
(i)

$$
\frac{8^{3 a} \times 2^{5} \times 2^{2 a}}{4 \times 2^{11 a} \times 2^{-2 a}}
$$

(ii) $\frac{3 \times 27^{n+1}+9 \times 3^{3 n-1}}{8 \times 3^{3 n}-5 \times 27^{n}}$
[4]

Section B

(Attempt any four questions from this section)

Question 5

a. On the side $A B$ and $A C$ of a triangle $A B C$, equilateral triangle $A B C$ and $A C E$ are drawn.
Prove that: i. angle CAD = angle BAE
ii. $\quad C D=B E$
b. Two angles of eight sided polygon are $142 \circ$ and $176 \circ$. If the remaining angles are equal to each other; find the magnitude of each of the equal angles.
c. Draw a histogram \& hence estimate the mode for following frequency distribution:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	2	8	10	5	4	3

Solution:

From graph: Join AC \& BD \quad Join AC \& BD
Mode $=\underline{23}$

Question 6

a. In a triangle $A B C ; A B=A C$. Show that the altitude $A D$ is median also.
b. Solve: $\frac{3}{x} \frac{2}{y}=0$ and $\frac{2}{x}+\frac{5}{y}=19$. Hence, find ' a ' if $y=a x+3$
c. The diagonals of a parallelogram $A B C D$ intersect at point O. Through O , a straight line is drawn parallel to $A B$ which meets $A D$ in P and $B C$ in Q.
Prove that:
(i) P and Q are mid-points of AD and BC respectively.
(ii) Area of $\triangle \mathrm{OAB}=\frac{1}{4}$ times the area of parallelogram ABCD .

Question 7

a. If $x=2 \sqrt{ } 3+2 \sqrt{2}$, find :
(i) $\frac{1}{\mathrm{x}}$
(ii) $x+\frac{1}{x}$
(iii) $\left(x+\frac{1}{x}\right)^{2}$
b. Marks obtained by 9 students are given below:
$60,67,52,76,50,51,74,45 \& 56$
i) Find arithmetic mean
ii) If marks of each student be increased by 4 ; what will be new value of arithmetic mean. [3]

Solution:

i) Arithmetic mean $=\frac{\sum \mathrm{x}}{\mathrm{n}}$

$$
\begin{aligned}
\sum \mathrm{x} & =60+67+52+76+50+51+74+45+56 \\
\therefore \sum \mathrm{x} & =531 \\
\mathrm{n} & =9 \\
\text { Arithmetic mean } & =\frac{\sum \mathrm{x}}{\mathrm{n}} \\
& =\frac{531}{9}
\end{aligned}
$$

\therefore Arithmetic mean $=59$
ii) When marks of each student is increased by 4,

$$
\text { New Arithmetic Mean = Original Mean }+4
$$

$$
=59+4
$$

$$
=\underline{63}
$$

c. Solve : $\frac{2 x+1}{10}-\frac{3-2 x}{15}=\frac{x-2}{6}$, Hence, find y, if $\frac{1}{x}+\frac{1}{y}+1=0$.

Question 8

a. If $m=\log 20$ and $n=\log 25$, find the value of x, so that: $2 \log (x-4)=2 m-n$.
b. construct a rhombus $A B C D$ when one of its side is 6 cm and angle A is $60 . \dot{\circ}$
c. The sum of the digits of a two digit number is 7. If the digits are reversed, the new number decreased by 2 , equals twice the original number. Find the number.

Question 9

a. The sum of two numbers is 9 and product is 20 find the sum of their
i. squares ii. Cubes.
b. 8.It is estimated that every year the value of a machine depreciates by 20% of its value at the beginning of the year. Calculate the original value of machine, if its value after two years is Rs. 10240.

Solution:

$$
\begin{aligned}
& \text { For } 1^{\text {st }} \text { year: } \\
& \text { Principal }=` \mathrm{P} \ldots \text { (Assumption) } \\
& \quad \text { Rate }=20 \% \\
& \mathrm{~T}=1 \text { year } \\
& \mathrm{I}==\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
& \mathrm{I}= \frac{\mathrm{P} \times 20 \times 1}{100}=\cdot \frac{2 \mathrm{P}}{10} \\
& \mathrm{~A}==\mathrm{P}+\mathrm{I} \\
&=\frac{\mathrm{P}}{1}-\frac{2 \mathrm{P}}{10} \\
& \mathrm{~A}=\frac{10 \mathrm{P}-2 \mathrm{P}}{1}=\frac{8 \mathrm{P}}{10}
\end{aligned}
$$

For $2^{\text {nd }}$ year:

$$
\begin{aligned}
\mathrm{P} & =\frac{8 \mathrm{P}}{10} \\
\mathrm{R} & =20 \% \mathrm{p} \cdot \mathrm{a} . \\
\mathrm{T} & =1 \mathrm{year} \\
\mathrm{I} & =\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}=\frac{8 \mathrm{P} \times 20 \times 1}{10 \times 100} \\
& \mathrm{I}=\frac{16 \mathrm{P}}{100} \\
& \mathrm{~A}=\mathrm{P}-\mathrm{I} \\
&=\frac{8 \mathrm{P}}{10}-\frac{16 \mathrm{P}}{100} \\
& \mathrm{~A}= \frac{80 \mathrm{P}-16 \mathrm{P}}{100} \\
& \therefore 10240=\frac{64 \mathrm{P}}{100} \\
& \therefore \mathrm{P}=\frac{10240 \times 100}{64} \\
& \mathrm{P}= 16000
\end{aligned}
$$

Ans.: The original value of machine $=` 16000$.
c. In $\triangle A B C, D$ is a point of $A B$, such that $A D=\frac{1}{4} A B$ and E is a point on $A C$ such that $A E=\frac{1}{4} A C$. Prove that: $D E=\frac{1}{4} B C$.

