GREENLAWNS SCHOOL, WORLI **Terminal Examination 2017** MATHEMATICS

STD: IX Date: 26/09/2017 Marks: 80 Time: 2¹/₂hrs

[3]

[4]

Section A

(Attempt **all** the questions from this section)

Question 1

a.	For the following set of data, find median:	
	10, 75, 3, 81, 17, 27,4, 48, 12, 47, 9 & 1	[3]
b.	construct a regular hexagon of side 4 cm.	[3]

- construct a regular hexagon of side 4 cm. b.
- In \triangle ABC angle A = 60° and angle C = 40° and bisector of angle ABC meet AC at point p. Show C. that BP = CP [4]

Question 2

a. If $a^x = b$, $b^y = c$ and $c^z = a$, prove that : $xyz = 1$.	[3]
---	-----

- b. A sum of `9600 is invested for 3 years at 10% p.a. CI
 - i) What is sum due at the end of first year?
 - What is sum due at the end of second year? ii)
 - iii) Hence write down the CI for 3rd year.
- C. Solve for x:

(i)
$$\log (x + 5) + \log (x - 5) = 4 \log 2 + 2 \log 3$$
. (ii) $\log (x + 3) - \log (x - 3) = 1$ [4]

Question 3

- The difference of the squares of two consecutive even natural numbers is 92. Taking a. x as the smaller of the two numbers, form an equation in x and hence find the larger of the two numbers. [3]
- If $\text{Log}_5 x = y$, find 5^{2y+3} in terms of x. [3] b.
- A chord CD of a circle, whose centre is O, is bisected at C. P, by diameter AB. Given: OA = OB = 15cm, OP = 9cm Calculate lengths of i) CD ii) AD iii) CB

Section B

(Attempt any four questions from this section)

D

[3]

[3]

[4]

Question 5

- a. On the side AB and AC of a triangle ABC, equilateral triangle ABC and ACE are drawn.
 Prove that:

 i. angle CAD = angle BAE
 ii. CD = BE
- b.Two angles of eight sided polygon are 142° and 176°. If the remaining angles are equal to each
other; find the magnitude of each of the equal angles.[3]
- c. Draw a histogram & hence estimate the mode for following frequency distribution: [4]

Class	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	2	8	10	5	4	3

Question 6

a. In a triangle ABC ; AB = AC .Show that the altitude AD is median also. [3]

b. Solve:
$$\frac{3}{r} + \frac{2}{v} = 0$$
 and $\frac{2}{r} + \frac{5}{v} = 19$. Hence, find 'a' if y = ax + 3 [3]

- c. The diagonals of a parallelogram ABCD intersect at point O. Through O, a straight line is drawn parallel to AB which meets AD in P and BC in Q.
 Prove that:
 - (i) P and Q are mid-points of AD and BC respectively.
 - (ii) Area of $\triangle OAB = \frac{1}{4}$ times the area of parallelogram ABCD.

a .	If $x = 2$	$2\sqrt{3} + 2\sqrt{2}$, find:	
	(i)	$\frac{1}{x}$ (ii) $x + \frac{1}{x}$ (iii) $\left[x + \frac{1}{x}\right]$	[3]
b.	Marks	obtained by 9 students are given below:	
	60, 67	7, 52, 76, 50, 51, 74, 45 & 56	
	i)	Find arithmetic mean	
	ii)	If marks of each student be increased by 4; what will be new arithmetic mean.	[3]
C.	Solve	$\frac{2x+1}{10} - \frac{3-2x}{15} = \frac{x-2}{6}$, Hence, find y, if $\frac{1}{x} + \frac{1}{y} + 1 = 0$.	[4]
Quest	tion 8		

- **a.** If $m = \log 20$ and $n = \log 25$, find the value of x, so that $: 2 \log (x 4) = 2 m n$. [3]
- b. Construct a rhombus ABCD when one of its side is 6cm and angle A is 60 [3]
- c. The sum of the digits of a two digit number is 7. If the digits are reversed, the new number decreased by 2, equals twice the original number. Find the number. [4]

Question 9

- a. The sum of two numbers is 9 and product is 20 find the sum of their
 - i. squares ii. Cubes. [3]
- b. It is estimated that every year the value of a machine depreciates by 20% of its value at the beginning of the year. Calculate the original value of machine, if its value after two years is Rs.10240.
 [3]
- **c.** In \triangle ABC, D is a point of AB, such that AD = $\frac{1}{4}$ AB and E is a point on AC such that AE = $\frac{1}{4}$ AC. Prove that: DE = $\frac{1}{4}$ BC. [4]

Answer key Section A (Attempt all the questions from this section)

Question 1

a. For the following set of data, find median: 10, 75, 3, 81, 17, 27,4, 48, 12, 47, 9 & 1

Solution:

Asc. Order:

n = 12 (even)
Median =
$$\frac{\left(\frac{n}{2}\right)^{\text{th}} \text{term} + \left(\frac{n}{2} + 1\right)^{\text{th}} \text{term}}{2}$$

$$= \frac{\left(\frac{12}{2}\right)^{\text{th}} \text{term} + \left(\frac{12}{2} + 1\right)^{\text{th}} \text{term}}{2}$$

$$= \frac{6^{\text{th}} \text{term} + 7^{\text{th}} \text{term}}{2}$$

$$= \frac{15 + 17}{2}$$

$$= \frac{32}{2}$$

Median = $\underline{16}$

b. construct a regular hexagon of side 4 cm.

[3]

[3]

c. In \triangle ABC angle A = 60° and angle C = 40° and bisector of angle ABC meet AC at point p. Show that BP = CP [4]

Question 2

a.	If $a^x = b$, $b^y = c$ and $c^z = a$, prove that : $xyz = 1$.	[3]
b.	 A sum of `9600 is invested for 3 years at 10% p.a. Cl i) What is sum due at the end of first year? ii) What is sum due at the end of second year? iii) Hence write down the Cl for 3rd year 	[3]
Solu	ution:	[0]
	For 1 st year:	
	P = 9600	
	R = 10% p.a.	
	T = 1 year	
	$I = \frac{P \times R \times T}{P \times R \times T}$	
	100	
	$=\frac{9600\times10\times1}{10}$	
	100	
	I = 960	
	A = P + I	
For	= 9600 + 960 = 10560	
FUI	2 year. P = `10560	
	R = 10% p a	
	T = 1 vear	
	$P \times R \times T$	
	$I = \frac{100}{100}$	
	$10560 \times 10 \times 1$	
	$I = \frac{100}{100} = 1056$	
	A = P + I	
	= 10560 + 1056	
	= ` 11616	
i)	Sum due after 1 year = ` 1056	
ii)	Sum due after 2 nd year = ` 11616	
III)	Req. Diff. = 11616 – 10560	
= 1	1056 (I.e. 12)	
10)	$1056 \times 10 \times 1$	
	$I = \frac{1000 \times 10 \times 1}{100} = 105.60$	
v)	$ \binom{\text{CI for}}{3^{\text{rd}} \text{ year}} = \binom{\text{CI for}}{2^{\text{rd}} \text{ year}} + \binom{\text{Int on it}}{\text{for 1 year}} $	
= 10	056 + 105.60	
CI fo	or 3 ^{ra} year = ` 1161.60	

с.	Solve for x: (i) log (x +	- 5) + log (x – 5) = 4	4 log 2 + 2 log 3.	(ii)	log (x + 3) – log (x – 3) = 1 [4]
Que	stion 3					
a.	The difference x as the small of the two nur	e of the squares of er of the two numb nbers.	two consecutive ev ers, form an equati	ven natu on in x	ural numbers is 92. Taki and hence find the large	ng r [3]
b.	lf Log₅ x = y, f	ind 5 ^{2y + 3} in terms	of x.			[3]
C.	A chord CD bisected at F Given: OA = Calculate ler	of a circle whose P, is bisected at P OB = 15cm, OP = ngths of i) CD ii)	centre is O, is , by diameter AB. = 9cm AD iii) CB			[4]
Solu	ition:					
S	tatement		Rea	ason		
1) C	CP = PD		give	en		
2) C	$OP \perp CD$	line joining	centre& mid pt o	of chore	d is \perp^{r} to chord.	
3) C	OA = OB = OC =	= 15cm	Rac	lii of sa	ume 🖸	
4) I1	n rt∆ OPC,					
(0C)	$^{2} = (OP)^{2} + (CP)^{2}$	$)^{2}$	Pythagoras theo	orem		
5) ($(Cp)^2 = (OC)^2 + (OC)^2$	$(0P)^{2}$				
		$=(15)^2+(9)^2$	$(0)^{2}$		substitution	
(CP) ²	$^{2} = 144$	Taking sq.	root on both side	s from	(1) & given	
			\therefore CP = 12cm	l		
6) C	$D = 2 \times CP = 2$	× 12				
		CD = 24 cn	n			
7) A	P = AO + OP, A	P = 24cm				
8) Iı	n rt∆ APD,					
(AD)	$^2 = (AP)^2 + (PD)^2$	$)^2$	Pythagoras theo	oremFre	om (1) (5) & (7)	
	$= (24)^2 + (12)^2$	$(2)^{2}$				
	= 576 + 144($(AD)^2 = 720$	Taking Sc	ı root o	n both sides	
			AD = 26.83cm	1		
9) P	B = OB – OP	= 15 – 9 PB = 60	cm (O -	- P – B)	1	
			6			

10) In rt∆BPC,

$$(BC)^2 = (CP)^2 + (PB)^2 = (12)^2 + (6)^2$$
 Pythagoras theorem from 5 & 9
 $= 144 + 36$
 $(BC)^2 = 180$
Taking sq. root on both sides
 $BC = 13.416$

In the figure, O is centre of the circle & $\angle AOC = 160^{\circ}$. Prove: $3 \angle y - 2 \angle x = 140^{\circ}$ [3] a.

Solution:

Statement

Reason

1) $\bot AOC = 2 \bot ABC$

2) $160^{\circ} = 2x$

3) ∟ABC +	$\Box ADC =$	180 [°]
4) x + y =	180 [°]	

Central angle is twice the angle at remaining circumference Substitution

$$\therefore$$
 x = 80°

Opp angles of cyclic \Box are supplementary

substitution

$$y = 180^{\circ} - x^{\circ}$$

 $y = 180^{\circ} - 80^{\circ}$

from (2)

$$y = 100^{\circ}$$

5) $3 \perp y - 2 \perp x = 3(100) - 2(80) \rightarrow \text{ from } 2 \& 4$

$$= 300^{\circ} - 160^{\circ}$$

 $3 \bot y - 2 \bot x = 140^{\circ}$

hence proved.

Factirise : $4(2x - 3y)^2 - 8x + 12y - 3$ b.

[3]

c. Simplify :

(i)
$$\frac{8^{3a} \times 2^5 \times 2^{2a}}{4 \times 2^{11a} \times 2^{-2a}}$$
 (ii) $\frac{3 \times 27^{n+1} + 9 \times 3^{3n-1}}{8 \times 3^{3n} - 5 \times 27^n}$ [4]

Section B

(Attempt any **four** questions from this section)

Question 5

- a. On the side AB and AC of a triangle ABC, equilateral triangle ABC and ACE are drawn. Prove that: i. angle CAD = angle BAE ii. CD = BE [3]
- **b.** Two angles of eight sided polygon are 142° and 176°. If the remaining angles are equal to each other; find the magnitude of each of the equal angles. [3]
- **c.** Draw a histogram & hence estimate the mode for following frequency distribution:

Class	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	2	8	10	5	4	3

Solution:

From graph: Join AC & BD

Join AC & BD

Mode = $\underline{23}$

Question 6

a. In a triangle ABC ; AB = AC .Show that the altitude AD is median also.

[3]

- **b.** Solve: $\frac{3}{x} \cdot \frac{2}{y} = 0$ and $\frac{2}{x} + \frac{5}{y} = 19$. Hence, find 'a' if y = ax + 3
- c. The diagonals of a parallelogram ABCD intersect at point O. Through O, a straight line is drawn parallel to AB which meets AD in P and BC in Q. Prove that:

[3]

- (i) P and Q are mid-points of AD and BC respectively.
- (ii) Area of $\triangle OAB = \frac{1}{4}$ times the area of parallelogram ABCD. [4]

Question 7

a. If $x = 2\sqrt{3} + 2\sqrt{2}$, find :

(i)
$$\frac{1}{x}$$
 (ii) $x + \frac{1}{x}$ (iii) $\left(x + \frac{1}{x}\right)^2$ [3]

b. Marks obtained by 9 students are given below:

60, 67, 52, 76, 50, 51, 74, 45 & 56

- i) Find arithmetic mean
- ii) If marks of each student be increased by 4; what will be new value of arithmetic mean. [3]

Solution:

i) Arithmetic mean = $\frac{\sum x}{n}$ $\sum x = 60 + 67 + 52 + 76 + 50 + 51 + 74 + 45 + 56$ $\therefore \sum x = 531$ n = 9Arithmetic mean = $\frac{\sum x}{n}$ $= \frac{531}{9}$ \therefore Arithmetic mean = 59 ii) When marks of each student is increased by 4, New Arithmetic Mean = Original Mean + 4 = 59 + 4 $= \frac{63}{9}$

c. Solve
$$:\frac{2x+1}{10} - \frac{3-2x}{15} = \frac{x-2}{6}$$
, Hence, find y, if $\frac{1}{x} + \frac{1}{y} + 1 = 0$. [4]

- **a.** If $m = \log 20$ and $n = \log 25$, find the value of x, so that $: 2 \log (x 4) = 2 m n$. [3]
- b. construct a rhombus ABCD when one of its side is 6cm and angle A is 60° [3]
- c. The sum of the digits of a two digit number is 7. If the digits are reversed, the new number decreased by 2, equals twice the original number. Find the number. [4]

Question 9

- **a.** The sum of two numbers is 9 and product is 20 find the sum of their i. squares ii. Cubes.
- b. 8.It is estimated that every year the value of a machine depreciates by 20% of its value at the beginning of the year. Calculate the original value of machine, if its value after two years is Rs.10240.
 [3]

[3]

Solution:

For 1st year: Principal = `P ... (Assumption) Rate = 20% T = 1 year I = $\frac{P \times R \times T}{100}$ I = $\frac{P \times 20 \times 1}{100} = \frac{2P}{10}$ A = P + I ... (: depreciation) = $\frac{P}{1} - \frac{2P}{10}$ A = $\frac{10P - 2P}{1} = \frac{8P}{10}$ For 2nd year: P = $\frac{8P}{10}$ R = 20% p.a. T = 1 year I = $\frac{P \times R \times T}{100}$

$$I = \frac{8P \times 20 \times 1}{10 \times 100}$$

$$I = \frac{16P}{100}$$

$$A = P - I \qquad \dots \text{ ($:$ depreciation)}$$

$$= \frac{8P}{10} - \frac{16P}{100}$$

$$A = \frac{80P - 16P}{100}$$

$$\therefore 10240 = \frac{64P}{100}$$

$$\therefore P = \frac{10240 \times 100}{64}$$

$$P = 16000$$
Ans.: The original value of machine
= 16000.

c. In \triangle ABC, D is a point of AB, such that $AD = \frac{1}{4}AB$ and E is a point on AC such that $AE = \frac{1}{4}AC$. Prove that: $DE = \frac{1}{4}BC$. [4]