Mathematics

## Section A

(Attempt all questions of this section)

## Question 1

a. What quantity must be added to each term of ratio $m+n: m-n$ to make it equal to $(m+n)^{2}:(m-n)^{2}$ ?
b. The catalogue price of a computer set is ` 45000 . The shopkeeper gives a discount of $7 \%$ on listed price. He gives further off season discount of $4 \%$ on balance. However, Sales Tax at $8 \%$ is charged on the remaining amount. Find:
(i) Amt. of Sales Tax a customer has to pay.
(ii) Final price he has to pay for computer set.
c. If $B$ and $C$ are two matrices such that $B=\left[\begin{array}{cc}\mathbf{1} & \mathbf{3} \\ -2 & 0\end{array}\right] \& C=\left[\begin{array}{cc}\mathbf{1 7} & \mathbf{7} \\ -\mathbf{4} & -8\end{array}\right]$. Find the matrix $A$ so that $B A=C$.

## Question 2

a. Mrs. Suneeta saves ` 8000 every year \& invests it at the end of the year at $10 \%$ p.a. Cl . Calculate her total savings at the end of third year.
b. Evaluate: $3 \cos 80^{\circ} \operatorname{cosec} 10^{\circ}+2 \cos 59^{\circ} \operatorname{cosec} 31^{\circ}$.
c. In $\triangle P Q R$, $L \& M$ are two points on base QR, such that $\angle L P Q=\angle Q R P \& \angle R P M=\angle R Q P$.

Prove that:
i) $\quad \triangle \mathrm{PQL} \sim \Delta \mathrm{RPM}$
ii) $\mathrm{QL} \times \mathrm{RM}=\mathrm{PL} \times \mathrm{PM}$
iii) $\mathrm{PQ}^{2}=\mathrm{QR} \times \mathrm{QL}$

Question 3
a. A company with 4000 shares of nominal value of ` 110 each declare an annual dividend of $15 \%$. Calculate
i) Total amount of dividend
ii) Annual income of a person who holds 88 shares in the company.
iii) If he received only $10 \%$ on his investment, find the price for each share.
b. The marks of 20 students in a test were as follows:
$2,6,8,9,10,11,11,12,13,13,14,14,15,15,15,16,16,18,19 \& 20$.
Calculate: (i)the mean, (ii) the median, (iii) the mode
c. The angle of elevation of a stationary cloud from a point 25 m above a lake is $30^{\circ}$ and the angle of depression of its reflection in lake is $60^{\circ}$. What is the height of cloud above that lakelevel?


## Question 4

a. Given $A=\{x:-1<x \leq 5, x \in R\}$
$B=\{x:-4 \leq x<3, x \in R\}$
Represent on different number lines:
(i) $A \cap B$ (ii) $A^{\prime} \cap B$ (iii) $A-B$
b. The length of common chord of two intersecting circles is 30 cm . If the diameters of these two circles be $50 \mathrm{~cm} \& 34 \mathrm{~cm}$. Calculate the distance between their centers.
c. Mr. Bhalu has a Savings Bank Account in Punjab National Bank. His pass book has following entries:

| Date <br> 1997 | Particulars | Debit <br> $\left({ }^{\prime}\right)$ | Credit <br> $\left({ }^{\prime}\right)$ | Balance <br> $\left({ }^{\prime}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| April 1 | B/F | - | - | 3220.00 |
| April 15 | By.T. | - | 2010.00 | 5230.00 |
| May 8 | To Cheque | 298.00 | - | 4932.00 |
| July 15 | By Clearing | - | 4628.00 | 9560.00 |
| July 29 | By Cash | - | 5440.00 | 15000.00 |
| Sep. 10 | To Self | - | 6980.00 | 8020.00 |
| Jan. 10 <br> (1998) | By Cash | - | 8000.00 | 16020.00 |

Calculate the interest due to him at the end of $31^{\text {st }}$ March 1998 at the rate of $6 \%$ p.a.

## Section B

(Attempt any four questions of this section)

## Question 5

a. The marks obtained by 120 students in a mathematics test are given below:

| Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of students | 5 | 9 | 16 | 22 | 26 | 18 | 11 | 6 | 4 | 3 |

Use Ogive to estimate
i) Median
ii) No. of students who scored more than $75 \%$ marks in a test
iii) The no. of students who did not pass in test if the pass percentage was 40
iv) The lower quartile
b. If $x=\frac{\mathbf{6 a b}}{\mathbf{a}+\mathbf{b}}$, find the value of: $\frac{\mathbf{x}+\mathbf{3} \mathbf{a}}{\mathbf{x}-\mathbf{3 a}}+\frac{\mathbf{x}+\mathbf{3} \mathbf{b}}{\mathbf{x}-\mathbf{3 b}}$.

## Question 6

a. In the given figure, $A C$ is diameter $C D \& B E$ is parallel. $\angle A O B=80^{\circ}, \angle A C E=10^{\circ}$. Calculate:
i) $\llcorner B E C$
ii) $\llcorner B C D$
iii) LCED

b. The ratio of base area and curved surface area of a conical tent is $40: 41$. If its height is 18 m . Find the air capacity of tent in terms of $\pi$.
c. Mr. Batliwala has a R.D. Account of Rs. 300 per month. If the rate of interest is $12 \%$ \& the maturity value is Rs. 8100 . Find the time (in yrs.) of this R.D. Account.

## Question 7

a. Show that $2 x+7$ is a factor of $2 x^{3}+5 x^{2}-11 x-14$. Hence factorize the given expression completely, using factor theorem.
b. Prove that: $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$.
c. If $A=\left[\begin{array}{ll}\mathbf{a} & \mathbf{0} \\ \mathbf{0} & 2\end{array}\right], B=\left[\begin{array}{cc}\mathbf{0} & -\mathbf{b} \\ \mathbf{1} & \mathbf{0}\end{array}\right], M=\left[\begin{array}{cc}\mathbf{1} & -\mathbf{1} \\ \mathbf{1} & \mathbf{1}\end{array}\right]$ \& $B A=M^{2}$, find values of $a \& b$.

## Question 8

a $\quad A B C$ is a right angled triangle. $A B=12 \mathrm{~cm}, A C=13$ cm . A circle with centre $O$ has been inscribed inside the triangle. Calculate the value of $x$, the radius of inscribed circle.
[3]

b. The diameter of a sphere is 6 cm . It is melted \& drawn into a wire of diameter 0.2 cm . Find the length of the wire.
c. Mr. Ram Gopal invested `8000 in \(7 \%\)` 80 . After a year he sold these shares at ` 75 each \& invested the proceeding (including his dividend) in \(18 \%{ }^{`} 25\) shares at ${ }^{`} 41$. Find:
i) Dividend for first year
ii) Annual income in second year

## Question 9

a. During every financial year, the value of a machine depreciates by $12 \%$. Find the original cost of a machine which depreciates by Rs. 2640 during second financial year of its purchase. [3]
b. A open cylindrical vessel of internal diameter 7 cm \& height 8 cm stands on a table. Inside this is place a solid metallic right circular cone, the diameter of whose base is $3 \frac{1}{2} \mathrm{~cm}$ \& height $=8 \mathrm{~cm}$.
Find volume of water required to fill the vessel.
c. A rectangular tank has length $=4 \mathrm{~cm}$, width $=3 \mathrm{~m}$ \& capacity $=30 \mathrm{~m}^{3}$. A small model of tank is made with capacity $240 \mathrm{~cm}^{3}$. Find:
i) Dimensions of model
ii) Ratio between total surface area of tank and its model.

Question 10
a. Find the value of ' $K$ ' if $(x-2)$ is a factor of $x^{3}+2 x^{2}-k x+10$. Hence determine whether $(x+5)$ is also a factor.
b. A manufacturer sells a washing machine to a wholesaler sells it to a trader at a profit of `1500 \& trader in turn sells it to a consumer at a profit of` 1800 . If the rate of VAT is $8 \%$, find:
(i) Amount of VAT received by State Government on sale of this machine from manufacturer \& the wholesaler.
(ii) the amount the consumer pays for the machine.
c. The mean of following distribution is 62.8 and the sum of all frequencies is 50 . Find the missing frequencies $\mathrm{f}_{1} \& \mathrm{f}_{2}$.

| Class | $0-20$ | $20-40$ | $40-60$ | $60-80$ | $80-100$ | $100-120$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 5 | $\mathrm{f}_{1}$ | 10 | $\mathrm{f}_{2}$ | 7 | 8 |

## Answer key

## Section A

(Attempt all questions of this section)

## Question 1

a. What quantity must be added to each term of ratio $m+n: m-n$ to make it equal to (m+

$$
n)^{2}:(m-n)^{2} ?
$$

## Solution:

Let ' $x$ ' be added to each term of given ratio.
$\therefore$ According to given condition,

$$
\begin{aligned}
\frac{\mathrm{m}+\mathrm{n}+\mathrm{x}}{\mathrm{~m}-\mathrm{n}+\mathrm{x}} & =\frac{(\mathrm{m}+\mathrm{n})^{2}}{(\mathrm{~m}-\mathrm{n})^{2}} \\
\therefore \frac{\mathrm{~m}+\mathrm{n}+\mathrm{x}}{\mathrm{~m}-\mathrm{n}+\mathrm{x}} & =\frac{\mathrm{m}^{2}+2 \mathrm{mn}+\mathrm{n}^{2}}{\mathrm{~m}^{2}-2 \mathrm{mn}+\mathrm{n}^{2}}
\end{aligned}
$$

By Dividendo, we get,

$$
\begin{aligned}
& \frac{\mathrm{m}+\mathrm{n}+\mathrm{x}-(\mathrm{m}-\mathrm{n}+\mathrm{x})}{\mathrm{m}-\mathrm{n}+\mathrm{x}}=\frac{\mathrm{m}^{2}+2 \mathrm{mn}+\mathrm{n}^{2}-\left(\mathrm{m}^{2}-2 \mathrm{mn}+\mathrm{n}^{2}\right)}{\mathrm{m}^{2}-2 \mathrm{mn}+\mathrm{n}^{2}} \\
& \frac{m+n+x-m+n-x}{m-n+x}=\frac{m^{2}+2 m n+n^{2}-m^{2}+2 m n-n^{2}}{m^{2}-2 m n+n^{2}} \\
& \frac{2 n}{m-n+x}=\frac{4 m n}{m^{2}-2 m n+n^{2}} \\
& \therefore 2 n\left(m^{2}-2 m n+n^{2}\right)=4 m n(m-n+x) \\
& m^{2}-2 m n+n^{2}=2 m(m-n+x) \\
& \therefore m^{2}-2 m n+n^{2}=2 m^{2}-2 m n+2 m x \\
& m^{2}-2 m^{2}+n^{2}=2 m x \\
& \therefore \mathrm{n}^{2}-\mathrm{m}^{2}=2 \mathrm{mx} \\
& \therefore \mathrm{x}=\frac{\mathrm{n}^{2}-\mathrm{m}^{2}}{2 \mathrm{~m}}
\end{aligned}
$$

Required no. to be added is
$\therefore \mathrm{x}=\frac{\mathrm{n}^{2}-\mathrm{m}^{2}}{2 \mathrm{~m}}$
b. The catalogue price of a computer set is` 45000. The shopkeeper gives a discount of 7\% on listed price. He gives further off season discount of 4\% on balance. However, Sales Tax at $8 \%$ is charged on the remaining amount. Find:
(i) Amt. of Sales Tax a customer has to pay.
(ii) Final price he has to pay for computer set.

Solution:
Marked Priced (MP) =`45000
Discount $d_{1}=7 \%$

$$
\mathrm{d}_{2}=4 \%
$$

$$
\text { Rate of } S T=8 \%
$$

$$
\begin{aligned}
\text { Sale Price } & =M P\left(1+\frac{d_{1}}{100}\right)\left(1+\frac{d_{2}}{100}\right) \\
& =45000\left(\frac{1}{1}+\frac{7}{100}\right)\left(\frac{1}{1}+\frac{4}{100}\right) \\
& =45000 \times \frac{93}{100} \times \frac{96}{100} \\
& =` 9 \times 93 \times 48
\end{aligned}
$$

Sale Price $=` 40,176$
i) Sales Tax (') $=\frac{\text { Rate of } \mathrm{ST}}{100} \times \mathrm{SP}$

$$
=\frac{8}{100} \times 40176
$$

Sales Tax (`) = ` 3214.08
ii)
$\begin{aligned} & \text { Final price for } \\ & \text { computerset }\end{aligned}=S P+$ Sales Tax

$$
=40176+3214.08
$$

$\therefore$ Final Price $=` 43390.08$
c. If $B$ and $C$ are two matrices such that $B=\left[\begin{array}{cc}1 & 3 \\ -2 & 0\end{array}\right] \& C=\left[\begin{array}{cc}17 & 7 \\ -4 & -8\end{array}\right]$. Find the matrix $A$ so that $B A=C$.

## Solution:

$$
\mathrm{B}_{2 \times 2} \cdot \mathrm{~A}_{\mathrm{m} \times \mathrm{n}}=\mathrm{C}_{2 \times 2}
$$

Using the rule for matrix multiplication

$$
\begin{aligned}
& p \times q \cdot q \times r=p \times r \\
& q=2, \quad r=2
\end{aligned}
$$

$\therefore$ Order of matrix $A=2 \times 2$
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\begin{aligned}
\mathrm{BA} & =\mathrm{C} \\
{\left[\begin{array}{cc}
1 & 3 \\
-2 & 0
\end{array}\right]\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] } & =\left[\begin{array}{cc}
17 & 7 \\
-4 & -8
\end{array}\right] \\
{\left[\begin{array}{cc}
1(\mathrm{a})+3(\mathrm{c}) & 1(\mathrm{~b})+3(\mathrm{~d}) \\
-2(\mathrm{a})+0(\mathrm{c}) & -2(\mathrm{~b})+0(\mathrm{~d})
\end{array}\right] } & =\left[\begin{array}{cc}
17 & 7 \\
-4 & -8
\end{array}\right] \\
{\left[\begin{array}{cc}
a+3 c & b+3 d \\
-2 a & -2 b
\end{array}\right] } & =\left[\begin{array}{cc}
17 & 7 \\
-4 & -8
\end{array}\right]
\end{aligned}
$$

Since matrices are equal, their corresponding elements are equal,

$$
\begin{equation*}
a+3 c=17 \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
b+3 d & =7 \\
-2 a & =-4 \\
\therefore a & =2 \\
-2 b & =-8 \\
\therefore b & =4
\end{aligned}
$$

Substituting $\mathrm{a}=2 \mathrm{in}$ (i)

$$
\begin{aligned}
a+3 c & =17 \\
2+3 c & =17 \\
3 c & =17-2 \\
3 c & =15 \\
\therefore c & =5
\end{aligned}
$$

Substituting $b=4$ in (ii)

$$
\begin{aligned}
b+3 d & =7 \\
4+3 d & =7 \\
\therefore 3 d & =7-4 \\
\therefore 3 d & =3 \\
\therefore d & =1 \\
\therefore A & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
5 & 1
\end{array}\right]
\end{aligned}
$$

## Question 2

a. Mrs. Suneeta saves ` 8000 every year \& invests it at the end of the year at $10 \%$ p.a. Cl . Calculate her total savings at the end of third year.

## Solution:

For $1^{\text {st }}$ year:
$P={ }^{\prime} 0$
$R=10 \%$ p.a.
$T=1$ year
$I=\frac{P \times R \times T}{100}={ }^{`} 0$
$A=P+I+$ savings
$=0+0+8000$
$A=` 8000$
For $\mathbf{2}^{\text {nd }}$ year:
$P=` 8000$
$R=10 \%$ p.a.
$T=1$ year
$I=\frac{P \times R \times T}{100}$
$I=\frac{8000 \times 10 \times 1}{100}=` 800$
$A=P+I+$ savings

$$
=8000+800+8000=` 16800
$$

For $3^{\text {rd }}$ year:
$P=` 16800$
$R=10 \%$ p.a.
$T=1$ year
$I=\frac{P \times R \times T}{100}$
$I=\frac{16800 \times 10 \times 1}{100}={ }^{`} 1680$
$A=P+I+$ savings
$=16800+1680+8000$
$A=` 26,480$
b. Evaluate: $3 \cos 80^{\circ} \operatorname{cosec} 10^{\circ}+2 \cos 59^{\circ} \operatorname{cosec} 31^{\circ}$.

## Solution:

$3 \cos 80^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \cos 59^{\circ} \cdot \operatorname{cosec} 31^{\circ}$
$=3 \sin (90-80)^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \sin (90-59)^{\circ} \operatorname{cosec} 31^{\circ}$
$=3 \sin 10^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2 \sin 31^{\circ} \cdot \operatorname{cosec} 31^{\circ}$
$=3 \times 1+2 \times 1$
$\ldots \sin \theta \cdot \operatorname{cosec} \theta=1$
$=3+2$
$=5$
c. In $\triangle P Q R, L \& M$ are two points on base $Q R$, such that $\angle L P Q=\angle Q R P \& \angle R P M=\angle R Q P$. Prove that:
i) $\triangle \mathrm{PQL} \sim \Delta \mathrm{RPM}$
ii) $Q L \times R M=P L \times P M$
iii) $P Q^{2}=\mathbf{Q R} \times \mathbf{Q L}$
[2003]

## Solution:

Given:
$\angle \mathrm{LPQ}=\angle \mathrm{QRP}$
$\angle \mathrm{RPM}=\angle \mathrm{RQP}$
To prove:
i) $\triangle \mathrm{PQL} \sim \Delta \mathrm{RPM}$
ii) $Q L \times R M=P L \times P M$
iii) $P Q^{2}=Q R \times Q L$


## Proof:

|  | Statement | Reason |
| :--- | :--- | :--- |
| 1$)$ | In $\triangle \mathrm{PQL} \& \Delta \mathrm{RPM}$, | Given |
|  | $\angle \mathrm{PQL}=\angle \mathrm{RPM}$ | Given |
|  | $\angle \mathrm{LPQ}=\angle \mathrm{MRP}$ | By AA axiom of similarity |
| 2$)$ | $\Delta \mathrm{PQL} \sim \triangle \mathrm{RPM}$ |  |


| 3$)$ | $\frac{\mathrm{QM}}{\mathrm{PM}}=\frac{\mathrm{PL}}{\mathrm{RM}}$ | c.s.s.t.p. |
| :--- | :--- | :--- |
|  | $\therefore \mathrm{QL} \times \mathrm{RM}=\mathrm{PL} \times \mathrm{PM}$ |  |
| 4$)$ | $\mathrm{In} \triangle \mathrm{PQL} \& \Delta \mathrm{RQP}$, |  |
|  | $\angle \mathrm{PQL}=\angle \mathrm{RQP}$ |  |
|  | $\angle \mathrm{LPQ}=\angle \mathrm{PRQ}$ | Common angle |
| 5$)$ | $\Delta \mathrm{PQL} \sim \Delta \mathrm{RQP}$ | Given |
| 6$)$ | $\frac{\mathrm{PQ}}{\mathrm{RQ}}=\frac{\mathrm{QL}}{\mathrm{QP}}$ | B.s.s.t.p. |
|  | $\therefore \mathrm{PQ} \times \mathrm{PQ}=\mathrm{QR} \times \mathrm{QL}$ | hence proved |
|  | $\therefore(\mathrm{PQ})^{2}=\mathrm{QR} \times \mathrm{QL}$ |  |

## Question 3

a. A company with 4000 shares of nominal value of ` 110 each declare an annual dividend of 15\%. Calculate
i) Total amount of dividend
ii) Annual income of a person who holds 88 shares in the company.
iii) If he received only $\mathbf{1 0 \%}$ on his investment, find the price for each share.

## Solution:

Face Value (FV) =` 110
Rate of dividend $=15 \%$
No. of shares $=4000$
Return \% = 10\%
i) Dividend $=\binom{$ Rate of }{ dividend }$\times \mathrm{FV} \times\binom{$ No. of }{ Shares }

$$
=\frac{15}{100} \times 100 \times 4000
$$

Dividend =` 66000
ii) No. of shares $=88$

Dividend $=\binom{$ Rate of }{ dividend }$\times \mathrm{FV} \times\binom{$ No. of }{ Shares }

$$
\begin{aligned}
& =\frac{15}{100} \times 110 \times 88 \\
& =33 \times 44
\end{aligned}
$$

Dividend = `1452
iii) Return $\% \times \mathrm{MV}=$ Dividend $\% \times \mathrm{FV}$

$$
\begin{aligned}
\frac{10}{100} \times \mathrm{MV} \quad & =\frac{15}{100} \times 100 \\
\mathrm{MV} & =\frac{15}{100} \times 110 \times \frac{100}{10}
\end{aligned}
$$

$$
M V=` 165
$$

b. The marks of $\mathbf{2 0}$ students in a test were as follows:
$2,6,8,9,10,11,11,12,13,13,14,14,15,15,15,16,16,18,19 \& 20$.
Calculate: (i)the mean, (ii) the median, (iii) the mode

## Solution:

i) $\sum \mathrm{x}=2+6+8+9+10+11+11+12+13+13+14+14+15+15+15+16+16+18$ $+19+20$.

$$
\begin{aligned}
\sum \mathrm{x} & =257 \\
\mathrm{n} & =20 \\
\text { Mean } & =\frac{\sum \mathrm{x}}{\mathrm{n}} \\
& =\frac{257}{20}
\end{aligned}
$$

$$
\text { Mean }=\underline{12.85}
$$

ii) $\quad N=20$ (even)

$$
\begin{aligned}
\text { Median } & =\frac{\left(\frac{\mathrm{n}}{2}\right)^{\text {th }} \text { term }+\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }} \text { term }}{2} \\
& =\frac{\left(\frac{20}{2}\right)^{\text {th }} \text { term }+\left(\frac{20}{2}+1\right)^{\text {th }} \text { term }}{2} \\
& =\frac{10^{\text {th }} \text { term }+11^{\text {th }} \text { term }}{2} \\
& =\frac{13+14}{2} \\
& =\frac{27}{2}
\end{aligned}
$$

Median $=\underline{13.5}$
iii) No. with highest frequency $=15$
$\therefore$ Mode $=15$
c. The angle of elevation of a stationary cloud from a point 25 m above a lake is $30^{\circ} \&$ the angle of depression of its reflection in lake is $60^{\circ}$. What is the height of cloud above that lake-level?

## Solution:

$A B=$ Lake level
$P Q=25 \mathrm{~m}$
C = Stationary cloud
D = Image of cloud

$\angle \mathrm{CPE}=30^{\circ}$ (Angle of elevation of S. claud)
$\angle D P E=60^{\circ}$ (Angle of depression of its reflection)
From figure, $\square$ PQFB is a rectangle
$P Q=E F=25 m$ $P E=Q F$ $\square$ Opp. sides of rectangle are equal
Also, CF = DF (Laws of reflection)
In right $\triangle C E P$, In right $\triangle D E P$,

$$
\begin{array}{rlrl}
\tan 30^{\circ} & =\frac{\mathrm{Opp} .}{\mathrm{Adj} .} & \tan 60^{\circ}=\frac{\mathrm{Opp} .}{\mathrm{Adj} .} \\
\frac{1}{\sqrt{3}}= & \frac{\mathrm{CE}}{\mathrm{PE}} & \sqrt{3}=\frac{\mathrm{ED}}{\mathrm{PE}} \\
\mathrm{PE} & =\sqrt{3} \cdot \mathrm{CE} & \mathrm{PE}=\frac{\mathrm{ED}}{\sqrt{3}} \\
\therefore \sqrt{3} \cdot \mathrm{CE} & =\frac{\mathrm{ED}}{\sqrt{3}} \\
\therefore \mathrm{ED} & =3 C E \\
\therefore \mathrm{EF}+\mathrm{DF} & =3[\mathrm{CF}-\mathrm{EF}] \\
\therefore 25+\mathrm{CF} & =3 C F-3 \times 25 \ldots(\mathrm{DF}=\mathrm{CF}) \\
\therefore 25+\mathrm{CF} & =3 C F-75 \\
100 & =2 C F \\
\therefore C F & =50 \mathrm{~m}
\end{array}
$$

Ans.: Height of cloud above lake level $=50 \mathrm{~m}$.

## Question 4

a. Given $A=\{x:-1<x \leq 5, x \in R\}$

$$
B=\{x:-4 \leq x<3, x \in R\}
$$

Represent on different number lines:
(i) $A \cap B$ (ii) $A^{\prime} \cap B$ (iii) $A-B$

## Solution:

## i) For $A \cap B$ :

S.S. $=\{x:-1<x<3, x \in R\}$

The graph of $A \cap B$ is:

ii) For $A^{\prime} \cap B=B-A$ :
S.S. $=\{x:-4 \leq x \leq-1, \quad x \in R\}$

The graph of $A^{\prime} \cap B$ is:

iii) For $A-B$ :
S.S. $=\{x: 3 \leq x \leq 5, x \in R\}$

The graph of $(A-B)$ is:

b. The length of common chord of two intersecting circles is $\mathbf{3 0} \mathbf{~ c m}$. If the diameters of these two circles be $50 \mathrm{~cm} \& 34 \mathrm{~cm}$. Calculate the distance between their centers.

## Solution:

Statement

1) $P Q \perp A B$


## Reason

Line joining centres bisects the common chord Perpendicularly.
2) $\mathrm{AR}=\frac{1}{2} \mathrm{AB}=\frac{1}{2} \times 30$
from (1), substitution.

$$
\therefore \mathrm{AR}=15 \mathrm{~cm}
$$

3) $\mathrm{AP}=\frac{1}{2}(34)=17 \mathrm{~cm} \mathrm{r}=\frac{\mathrm{d}}{2}$ \& given
$A Q=\frac{1}{2}(50)=25 \mathrm{~cm}$
4) In rt $\triangle$ ARP,
$(\mathrm{AP})^{2}=(\mathrm{AR})^{2}+(\mathrm{PR})^{2}$ Pythagoras theorem

$$
\therefore(\mathrm{PR})^{2}=(\mathrm{AP})^{2}-(\mathrm{AR})^{2}
$$

$$
=(17)^{2}-(15)^{2}
$$

$$
=289-225=64
$$

$\mathrm{PR}=8 \mathrm{~cm}$
5) In rt $\triangle A R Q$,
$(A Q)^{2}=(A R)^{2}+(R Q)^{2}$ Pythagoras theorem

$$
(\mathrm{RQ})^{2}=(\mathrm{AQ})^{2}-(\mathrm{AR})^{2}
$$

$=(25)^{2}-(15)^{2}$
$(R Q)^{2}=400$
6) $P Q=P R+R Q$
from 2 \& 3

$$
=625-225
$$

Taking sq. root on both sides $P-R-Q$

$$
\mathrm{RQ}=20 \mathrm{~cm}
$$

$P-R-Q$

$$
\begin{gathered}
=8+20 \\
\therefore \mathrm{PQ}=28 \mathrm{~cm}
\end{gathered}
$$

c. Mr. Bhalu has a Savings Bank Account in Punjab National Bank. His pass book has following entries:

| Date <br> $\mathbf{1 9 9 7}$ | Particulars | Debit <br> () | Credit <br> ( ) | Balance <br> ( ) |
| :--- | :--- | :--- | :--- | :--- |
| April 1 | B/F | - | - | 3220.00 |
| April 15 | By.T. | - | 2010.00 | 5230.00 |
| May 8 | To Cheque | 298.00 | - | 4932.00 |
| July 15 | By Clearing | - | 4628.00 | 9560.00 |
| July 29 | By Cash | - | 5440.00 | 15000.00 |
| Sep. 10 | To Self | - | 6980.00 | 8020.00 |
| Jan. 10 <br> $(1998)$ | By Cash | - | 8000.00 | 16020.00 |

Calculate the interest due to him at the end of $31^{\text {st }}$ March 1998 at the rate of 6\% p.a.

## Solution:

Qualifying amount for various months:

| Month | Principal |
| :--- | ---: |
| April, 1997 | 3220.00 |
| May | 4932.00 |
| June | 4932.00 |
| July | 4932.00 |
| August | 15000.00 |
| September | 8020.00 |
| October | 8020.00 |
| November | 8020.00 |
| December | 8020.00 |
| January, 1998 | 16020.00 |
| February | 16020.00 |
| March | +16020.00 |

| Month | Principal |
| :--- | :--- |
| Total | $` 113156.00$ |

For Interest:

$$
\begin{aligned}
\text { Principal }(\mathrm{P}) & =` 113156.00 \\
\text { Rate }(\mathrm{R}) & =6 \% \text { p.a. } \\
\text { Time }(\mathrm{T}) & =\frac{1}{12} \mathrm{yr} . \\
\mathrm{I} & =\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
& =\frac{113156 \times 6 \times 1}{100 \times 12} \\
& =\frac{56578}{100} \\
\therefore \mathrm{I} & =` 565.78
\end{aligned}
$$

## Section B

(Attempt any four questions of this section)

## Question 5

a. The marks obtained by 120 students in a mathematics test are given below:

| Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of students | 5 | 9 | 16 | 22 | 26 | 18 | 11 | 6 | 4 | 3 |

## Use Ogive to estimate

i) Median
ii) No. of students who scored more than $75 \%$ marks in a test
iii) The no. of students who did not pass in test if the pass percentage was 40
iv) The lower quartile

## Solution:

| Marks | No. of <br> Students <br> $\mathbf{f}$ | Cumulative <br> frequency <br> c.f. | (x, y) |
| :---: | :---: | ---: | :---: |
| $0-10$ | 5 | 5 | $(10,5)$ |
| $10-20$ | 9 | $5+9=14$ | $(20,14)$ |
| $20-30$ | 16 | $14+16=30$ | $(30,30)$ |
| $30-40$ | 22 | $30+22=52$ | $(40,52)$ |


| $40-50$ | 26 | $52+26=78$ | $(50,78)$ |
| :---: | :---: | ---: | :---: |
| $50-60$ | 18 | $78+18=96$ | $(60,96)$ |
| $60-70$ | 11 | $96+11=107$ | $(70,107)$ |
| $70-80$ | 6 | $107+6=113$ | $(80,113)$ |
| $80-90$ | 4 | $113+4=117$ | $(90,117)$ |
| $90-100$ | 3 | $117+3=120$ | $(100,120)$ |

i) $\quad \mathrm{N}=120$ (even)

Median $=\left(\frac{\mathrm{N}}{2}\right)^{\text {th }}$ term
$=\left(\frac{120}{2}\right)^{\text {th }}$ term
$=60^{\text {th }}$ term
Median $=\underline{43}$
Scale:

On X-axis

ii) No. of students scoring more than $75 \%$ marks $=120-110=\underline{10}$
iii) No. of students who did not pass $=\underline{52}$
iv) Lower Quartile $\left(Q_{1}\right)=\left(\frac{N}{4}\right)^{\text {th }}$ term

$$
\begin{aligned}
& =\left(\frac{120}{4}\right)^{\text {th }} \text { term } \\
& =30^{\text {th }} \text { term } \\
Q_{1} & =\underline{30}
\end{aligned}
$$

b. If $x=\frac{6 a b}{a+b}$, find the value of: $\frac{x+3 a}{x-3 a}+\frac{x+3 b}{x-3 b}$.

## Solution:

$$
\begin{aligned}
x & =\frac{6 a b}{a+b} \quad \ldots \text { given } \\
\therefore \frac{x}{3 a} & =\frac{2 b}{a+b}
\end{aligned}
$$

By Componendo-Dividendo, we get,

$$
\begin{align*}
\frac{x+3 a}{x-3 a} & =\frac{2 b+a+b}{2 b-a-b} \\
\therefore \frac{x+3 a}{x-3 a} & =\frac{3 b+a}{b-a} \quad \ldots \text { (i) }  \tag{i}\\
x & =\frac{6 a b}{a+b} \quad \ldots \text { given }
\end{align*}
$$

$$
\frac{x}{3 b}=\frac{2 a}{a+b}
$$

By Componendo-Dividendo, we get,

$$
\begin{align*}
\frac{x+3 b}{x-3 b} & =\frac{2 a+a+b}{2 a-a-b} \\
\therefore \frac{x+3 b}{x-3 b} & =\frac{3 a+b}{a-b} \tag{ii}
\end{align*}
$$

Add (i) \& (ii), we get,

$$
\begin{aligned}
\frac{x+3 a}{x-3 a}+\frac{x+3 b}{x-3 b} & =\frac{3 b+a}{b-a}+\frac{3 a+b}{a-b} \\
& =\frac{3 b+a}{b-a}-\frac{3 a+b}{a-b} \\
& =\frac{3 b+a-3 a-b}{b-a} \\
& =\frac{2 b-2 a}{b-a} \\
& =\frac{2(b-a)}{(b-a)} \\
\frac{x+3 a}{x-3 a}+\frac{x+3 b}{x-3 b} & =2
\end{aligned}
$$

## Question 6

a. In the given figure, $A C$ is diameter $C D \& B E$ are parallel. $\left\llcorner A O B=80^{\circ},\left\llcorner A C E=10^{\circ}\right.\right.$. Calculate:
i) $\llcorner\mathrm{BEC}$
ii) $\llcorner B C D$
iii) $\llcorner$ CED

[3]

## Solution:

## Statement

1) $\angle \mathrm{AOB}+\angle \mathrm{BOC}=180^{\circ}$
2) $80^{\circ}+\left\llcorner\mathrm{BOC}=180^{\circ}\right.$
3) $\left\llcorner\mathrm{BEC}=\frac{1}{2}\llcorner\mathrm{BOC}\right.$

$$
\square \quad\left\llcorner\mathrm{BEC}=\frac{1}{2} \times 100^{\circ}=50^{\circ}\right.
$$

4) $\angle D C E=\llcorner B E C$ $\therefore \angle \mathrm{DCE}=50^{\circ}$
5) $\left\llcorner\mathrm{ACB}=\frac{1}{2}\llcorner\mathrm{AOB}\right.$

## Reason

Linear pair
Substitution.

$$
\angle B O C=100^{\circ}
$$

Central $\square$ s is twice the angle at remaining circumference.
alternate $\square \mathrm{s}$.

Central $\square$ s is twice are angle at remaining circumference.
$\angle \mathrm{ACB}=\frac{1}{2} \times 80^{\circ}=40^{\circ}$
6) $L B C D=\llcorner D C E+\angle A C E+L A C B \quad$ Angle additionProp.
$\angle B C D=50^{\circ}+10^{\circ}+40^{\circ}$
$\angle B C D=100^{\circ}$
7) $\angle B C D+\angle B E D=180^{\circ}$
8) $\angle \mathrm{BCD}+\left\llcorner\mathrm{BEC}+\left\llcorner\mathrm{CED}=180^{\circ}\right.\right.$

Opp $\square$ s of angle $\square$ are suppl.
Angle add $P$.
$100^{\circ}+50^{\circ}+\angle C E D=180^{\circ}$
$\angle C E D=30^{\circ}$
From 3 \& 6.
b. The ratio of base area and curved surface area of a conical tent is 40: 41. If its height is 18 m . Find the air capacity of tent in terms of $\pi$.

## Solution:

## For conical tent:

Height (h) $=18 \mathrm{~m}$
According to given condition,
$\frac{\text { Area of base }}{\text { Curved surface area }}=\frac{40}{41}$

$$
\begin{aligned}
\frac{\pi r^{2}}{\pi r l} & =\frac{40}{41} \\
r: I & =40: 41
\end{aligned}
$$

Let the common multiple be $x$.
radius $(\mathrm{r})=40 x$;
slant height $(I)=41 x$

$$
R=h^{2}+\mathrm{r}^{2} \quad \ldots \text { Pythagoras theorem }
$$

$$
(41 x)^{2}=(18)^{2}+(40 x)^{2}
$$

$$
1681 x^{2}=324+1600 x^{2}
$$

$\therefore 1681 x^{2}-1600 x^{2}=324$
$81 x^{2}=324$
$x^{2}=\frac{324}{81}=4 \quad \ldots$ Taking square root on both sides
$x=2$
$r=40 x=40 \times 2=80 \mathrm{~cm}$
Air capacity of tent $=$ Volume of cone

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} \mathrm{~h} \\
& =\frac{1}{3} \pi(80)^{2} \times 18
\end{aligned}
$$

$\therefore$ Air capacity of tent $=38400 \mathrm{~m}^{3}$
c. Mr. Batliwala has a R.D. Account of Rs. 300 per month. If the rate of interest is $12 \%$ \& the maturity value is Rs. 8100. Find the time (in yrs.) of this R.D. Account.

## Solution:

Monthly Installment =` 300
Let No. of months be ' $n$ '.
Equivalent Principal for 1 month

$$
\begin{aligned}
(\mathrm{P}) & =\mathrm{MI} \times \frac{\mathrm{n}(\mathrm{n}+1)}{2} \\
& =300 \times \frac{\mathrm{n}(\mathrm{n}+1)}{2}
\end{aligned}
$$

$$
\therefore P=150 \mathrm{n}(\mathrm{n}+1)
$$

Rate $(R)=12 \%$ p.a.
Time $(T)=\frac{1}{12} \mathrm{yr}$.

$$
\begin{aligned}
I & =\frac{P \times R \times T}{100} \\
& =\frac{150 n(n+1) \times 12 \times 1}{100 \times 12} \\
I & =\frac{5 n(n+1)}{10}
\end{aligned}
$$

Actual deposit $=\mathrm{MI} \times \mathrm{n}$

$$
\begin{aligned}
& =300 \times n \\
& =` 300 n
\end{aligned}
$$

Maturity Value $=\binom{$ Actual }{ deposit }$+$ Interest
$\therefore 8100=300 \mathrm{n}+\frac{15 \mathrm{n}(\mathrm{n}+1)}{10}$

$$
8100=\frac{600 n+3 n^{2}+3 n}{2}
$$

$$
\therefore 3 n^{2}+603 n=16200
$$

Divide each term by 3 , we get,

$$
\begin{aligned}
n^{2}+201 n-5400 & =0 \\
n^{2}+225 n-24 n-5400 & =0 \\
n(n+225)-24(n+225) & =0 \\
(n+225)(n-24) & =0
\end{aligned}
$$

$$
n+225-0=0
$$

$$
\text { or } \quad n-24=0
$$

or

$$
\begin{aligned}
& \mathrm{n}=-225 \\
& \mathrm{n}=24
\end{aligned}
$$

' $n$ ' cannot be negative
$\therefore$ Time $=\frac{24}{12}=2 \mathrm{yrs}$.

## Question 7

a. Show that $2 x+7$ is a factor of $2 x^{3}+5 x^{2}-11 x-14$. Hence factorize the given expression completely, using factor theorem.

Solution:
$f(x)=2 x^{3}+5 x^{2}-11 x-14$
By remainder theorem, when $f(x)$ is divided by $(2 x+7)$,
the remainder is $\mathrm{f}\left(-\frac{7}{2}\right)$

$$
\begin{aligned}
& \mathrm{f}\left(-\frac{7}{2}\right)=2\left(-\frac{7}{2}\right)^{3}+5\left(-\frac{7}{2}\right)^{2}-11\left(-\frac{7}{2}\right)-14 \\
& \mathrm{f}\left(-\frac{7}{2}\right)=2\left(\frac{-343}{8}\right)+5\left(\frac{49}{4}\right)+\frac{77}{2}-\frac{14}{1} \\
& \mathrm{f}\left(-\frac{7}{2}\right)=-\frac{343}{4}+\frac{245}{4}+\frac{77}{2}-\frac{14}{1} \\
& \mathrm{f}\left(-\frac{7}{2}\right)=\frac{-343+245+154-56}{4} \\
& \mathrm{f}\left(-\frac{7}{2}\right)=\frac{-399+399}{4} \\
& \mathrm{f}\left(-\frac{7}{2}\right)=\frac{0}{4}=0
\end{aligned}
$$

By factor theorem, $\because \mathrm{f}\left(-\frac{7}{2}\right)=0$
$(2 x+7)$ is a factor of $f(x)$.
For other factors:

$$
\begin{aligned}
& 2 x+7 \begin{array}{l|l} 
& x^{2}-x-2 \\
2 x^{3}+5 x^{2}-11 x-14
\end{array} \\
& -2 x^{3}+7 x^{2} \\
& (-) \quad(-) \\
& -2 x^{2}-11 x-14 \\
& -\quad-2 x^{2}-7 x \\
& \text { (+) (+) } \\
& -4 x-14 \\
& -4 x-14 \\
& (+) \quad(+) \\
& \mathrm{x} \\
& f(x)=2 x^{3}+5 x^{2}-11 x-14 \\
& f(x)=(2 x+7)\left(x^{2}-x-2\right) \\
& =(2 x+7)\left(x^{2}-2 x+x-2\right) \\
& =(2 x+7)[x(x-2)+1(x-2)] \\
& \therefore f(x)=(2 x+7)(x-2)(x+1)
\end{aligned}
$$

b. Prove that: $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$.

## Solution:

$$
\begin{aligned}
\text { L.H.S. } & =(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2} \\
& =\sin ^{2} A+2 \sin A \cdot \operatorname{cosec} A+\operatorname{cosec}^{2} A+\cos ^{2} A+2 \cos A \cdot \sec A+\sec ^{2} A \\
& =\sin ^{2} A+\operatorname{cosec}^{2} A+2+\cos ^{2} A+2+\sec ^{2} A \quad \ldots(a+b)^{2}=a^{2}+2 a b+b^{2} \\
& =1+\operatorname{cosec}^{2} A+2+2+\sec ^{2} A \ldots \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& =5+1+\cot ^{2} A+1+\tan ^{2} A \quad \ldots \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta \& \sec ^{2} \theta=1+\tan ^{2} \theta \\
& =7+\tan ^{2} A+\cot ^{2} A \\
\text { A.H.S. } & =\text { R.H.S. } \quad \ldots \text { hence proved. }
\end{aligned}
$$

c. If $A=\left[\begin{array}{ll}a & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{cc}0 & -b \\ 1 & 0\end{array}\right], M=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right] \& B A=M^{2}$, find values of $a \& b$.

## Solution:

$$
\begin{aligned}
\mathrm{BA} & =\mathrm{M}^{2} \quad \ldots \text { given } \\
\mathrm{BA} & =\mathrm{M} \cdot \mathrm{M} \\
{\left[\begin{array}{cc}
0 & -\mathrm{b} \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
\mathrm{a} & 0 \\
0 & 2
\end{array}\right] } & =\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{cc}
0(a)+b(0) & 0(0)+b(2) \\
1(a)+0(0) & 1(0)+0(2)
\end{array}\right] } & =\left[\begin{array}{cc}
1(1)+(-1) 1 & 1(-1)+(-1) 1 \\
1(1)+(1)(1) & 1(-1)+1(1)
\end{array}\right] \\
{\left[\begin{array}{cc}
0 & -2 b \\
a & 0
\end{array}\right] } & =\left[\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right]
\end{aligned}
$$

Since the matrices are equal, their corresponding elements are also equal.
$-2 b=-2 \quad \& \quad a=2$
$\therefore \mathrm{b}=1$
Ans.: $a=2, b=1$

## Question 8

a $A B C$ is a right angled triangle. $A B=12 \mathrm{~cm}$, $A C=13 \mathrm{~cm}$. A circle with centre $O$ has been inscribed inside the triangle. Calculate the value of $x$, the radius of inscribed circle.
[3]

## Solution:

Statement

1) $O P=O R=O Q=x$
2) $\square O P B R$ is a square
3) $\therefore \mathrm{OP}=\mathrm{BP}=\mathrm{BR}=\mathrm{x}$
4) In right $\triangle A B C$,
$(A C)^{2}=(A B)^{2}+(B C)^{2}$
$(13)^{2}=(12)^{2}+(B C)^{2}$
$(B C)^{2}=169-144$
$B C^{2}=25$
$B C=5 \mathrm{~cm}$
5) $A R=A Q$
6) $A Q=A B-B R$
$A Q=(12-x)$
7) $\mathrm{CP}=\mathrm{CQ}$
8) $\quad C Q=B C-B P$
$C Q=(5-x)$
9) $\mathrm{AC}=\mathrm{AB}+\mathrm{QC}$

$$
13=12-x+5-x
$$

$$
13=17-2 x
$$

$$
2 x=4
$$

$$
x=\underline{2 c m}
$$

Radius $=\underline{x=2 \mathrm{~cm}}$

## Reason

... Radii of same circle
$\ldots$.. $\because$ Each Angle is $90^{\circ}$ \& Adjacent sides are equal
... from (1)\&(2)
... Pythagoras theorem
... Substitution
... Taking square root on both sides
... Tangents from ext. point are equal
... A-R-B
... from 3 \& given
... Tangents from exterior point are equal
... B-P-C
... A-Q-C
... from (6)\& (8)
b. The diameter of a sphere is $6 \mathbf{c m}$. It is melted \& drawn into a wire of diameter 0.2 cm . Find the length of the wire.

## Solution:

For sphere:
Diameter $=6 \mathrm{~cm}$
Radius $\left(r_{s}\right)=\frac{6}{2}=3 \mathrm{~cm}$
For cylindrical wire:
Diameter $=0.2 \mathrm{~cm}$

$$
\text { Radius }=\frac{0.2}{2}=\underline{0.1 \mathrm{~cm}}
$$

$$
\text { Length }=\text { Height }=?
$$

According to given condition,

$$
\begin{aligned}
\frac{4}{3} \pi \mathrm{r}_{\mathrm{s}}^{3} & =\pi \mathrm{r}^{2} \mathrm{~h} \\
\therefore \frac{4}{3} \times(3)^{2} & =(0.1)^{2} \times \mathrm{h} \\
\mathrm{~h} & =\frac{4 \times 9}{0.1 \times 0.1}=\frac{36}{0.01}=3600 \mathrm{~cm}=36 \mathrm{~cm}
\end{aligned}
$$

$\therefore$ Length of wire $=\underline{36 \mathrm{~m}}$
c. Mr. Ram Gopal invested `8000 in \(7 \%\)` 80 . After a year he sold these shares at `75 each \& invested the proceeding (including his dividend) in \(18 \%\)` 25 shares at ${ }^{\text {` } 41 \text {. Find: }}$
i) Dividend for first year
ii) Annual income in second year
iii) Percentage increases in his return on his original investment.

## Solution:

For first year:
Investment =` 8000 Face Value (FV) =` 100
Market Value (MV) = ` 80
Rate of dividend $=7 \%$
i) No. of shares $=\frac{\text { Investment }}{\text { MV }}$

$$
=\frac{8000}{80}
$$

$=100$ shares
Dividend $=\binom{$ Rate of }{ dividend }$\times \mathrm{FV} \times\binom{$ No. of }{ Shares }

$$
=\frac{7}{100} \times 100 \times 100
$$

$$
\text { Dividend }=` 700
$$

For Second Year:
SP of 1 share $={ }^{`} 75$
SP of 100 shares $=` 7500$
Sale Proceeds = ` 7500
Investment = Sale Proceed + Dividend

$$
\begin{aligned}
& =7500+700 \\
& =` 8200 \text {-------------------1m }
\end{aligned}
$$

Face Value (FV) $=` 25$
Market Value (MV) =` 41
Rate of dividend $=18 \%$
ii) No. of shares $=\frac{\text { Investment }}{\text { MV }}$

$$
=\frac{8200}{41}=200
$$

Dividend $=\binom{$ Rate of }{ dividend }$\times \mathrm{FV} \times\binom{$ No. of }{ Shares }

$$
=\frac{18}{100} \times 25 \times 200
$$

Dividend $=` 900$ $1 m$
iii) Increase in Income

$$
=\binom{\text { Dividend }}{\text { in } 2^{\text {nd }} \text { year }}-\binom{\text { Divide }}{\text { in } 1^{\text {st }} \text { year }}
$$

$$
\begin{aligned}
& =900-700 \\
& =` 200
\end{aligned}
$$

Percentage Increase $=\frac{\text { Increase }}{\text { Originallnv. }} \times 100$

$$
=\frac{200}{8000} \times 100
$$

Percentage Increase $=2.5 \%$ 1 m

## Question 9

a. During every financial year, the value of a machine depreciates by $12 \%$. Find the original cost of a machine which depreciates by Rs. 2640 during second financial year of its purchase.

## Solution:

For $1^{\text {st }}$ year:

$$
\begin{aligned}
& \text { Principal }(P)=` P \quad \ldots \text { (assumption) } \\
& \text { Rate }(R)=12 \% \text { p.a. } \\
& \text { Time }(T)=1 \text { year } \\
& I=\frac{P \times R \times T}{100}
\end{aligned}
$$

$=\frac{\mathrm{P} \times 12 \times 1}{100}$

$$
\mathrm{I}=\frac{.12 \mathrm{P}}{100}
$$

$$
A=P+1 \quad \ldots(\because \text { depreciation })
$$

$$
A=P-\frac{12 P}{100}=\cdot \frac{88 \mathrm{P}}{100}
$$

For $2^{\text {nd }}$ year:

$$
\begin{aligned}
& \mathrm{P}=\frac{.88 \mathrm{P}}{100} \\
& \mathrm{R}=12 \% \text { p.a. } \\
& \mathrm{T}=1 \text { year } \\
& \mathrm{I}=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100} \\
& 2640=\frac{88 \mathrm{P} \times 12 \times 1}{100 \times 100} \\
& \therefore \mathrm{P}=\frac{2640 \times 100 \times 100}{88 \times 12} \\
& \therefore \quad \mathrm{P}={ }^{2} \\
& \therefore 2500
\end{aligned}
$$

Ans.: The original cost of a machine $=` 25000$.
b. A open cylindrical vessel of internal diameter 7 cm \& height $\mathbf{8 c m}$ stands on a table. Inside this is place a solid metallic right circular cone, the diameter of whose base is $3 \frac{1}{2} \mathrm{~cm} \&$ height $=8 \mathbf{c m}$. Find volume of water required to fill the vessel.

## Solution:

For cylindrical vessel,
Diameter $=7 \mathrm{~cm}$
Radius ( r ) $=\frac{7}{2} \mathrm{~cm}$
Height (h) $=8 \mathrm{~cm}$
For solid metallic cone,
Diameter $=\frac{7}{2} \mathrm{~cm}$
Radius $\left(r_{c}\right)=\frac{7}{4} \mathrm{~cm}$
Height $(h)=8 \mathrm{~cm} \quad .$. same as cylindrical vessel
According to given condition,
$\binom{$ Volume of water }{ to fill the vessel }$=\binom{$ volume of }{ cylindrical vessel }$-\binom{$ Volume of }{ solid cone }

$$
\begin{aligned}
& =\pi r^{2} h-\frac{1}{3} \pi r_{c}^{2} h \\
& =\pi h\left[r^{2}-\frac{1}{3} r_{c}^{2}\right] \\
& =\frac{22}{7} \times 8\left[\left(\frac{7}{2}\right)^{2}-\frac{1}{3} \times\left(\frac{7}{4}\right)^{2}\right] \\
& =\frac{22}{7} \times 8\left[\frac{49}{4}-\left(\frac{1}{3} \times \frac{49}{16}\right)\right] \\
& =\left[\frac{49}{4}-\frac{49}{48}\right] \\
& =\left[\frac{588-49}{48}\right] \\
& =\frac{22}{7} \times 8--\times \frac{539}{48} \\
& =\frac{847}{3}=282.33
\end{aligned}
$$

Volume of water $=\underline{282.33 \mathrm{~cm}^{3}}$
c. A rectangular tank has length $=4 \mathrm{~cm}$, width $=3 \mathrm{~m}$ \& capacity $=30 \mathrm{~m}^{3}$. A small model of tank is made with capacity 240 cm $^{3}$. Find:
i) Dimensions of model
ii) Ratio between total surface area of tank and its model.

## Solution:

For rectangular tank,
Capacity $=$ Vol. of cuboids

$$
30=1 \times b \times h
$$

$$
\therefore \mathrm{h}=\frac{30}{4 \times 3}=2.5 \mathrm{~cm}
$$

* $\frac{\text { Volume of model }}{\text { Volume of tank }}=\mathrm{k}^{3}$

$$
\begin{aligned}
\therefore \frac{240 \mathrm{~cm}^{3}}{30 \mathrm{~m}^{3}} & =\mathrm{k}^{3} \\
\mathrm{k}^{3} & =\frac{240 \mathrm{~cm}^{3}}{30 \times 100 \times 100 \times 100 \mathrm{~cm}^{3}}
\end{aligned}
$$

Taking cube root on both sides

$$
\begin{aligned}
& \mathrm{k}=\frac{2}{100} \\
& \mathrm{k}=\frac{1}{50}
\end{aligned}
$$

i) $\quad \frac{\text { length of model }}{\text { length of } \operatorname{tank}}=\mathrm{k}$

$$
\text { length of model }=\frac{1}{50} \times 4 \mathrm{~m}
$$

$$
\text { length of model }=\frac{1}{50} \times 400 \mathrm{~cm}=8 \mathrm{~cm}
$$

$\frac{\text { breadth of model }}{\text { breadth of tank }}=k$
$\therefore$ breadth of model $=\frac{1}{50} \times 3 \mathrm{~cm}$

$$
=\frac{1}{50} \times 300 \mathrm{~cm}
$$

$\therefore$ breadth of model $=6 \mathrm{~cm}$

$$
\frac{\text { Height of model }}{}=k
$$

Height of tank

$$
\begin{aligned}
\text { Height of model } & =\frac{1}{50} \times 2.5 \mathrm{~m} \\
& =\frac{1}{50} \times 250 \mathrm{~cm}
\end{aligned}
$$

Height of model $=5 \mathrm{~cm}$
ii) $\frac{\text { Total surface area of model }}{\text { T.S.Area of tank }}=k^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{50}\right)^{2} \\
& =\frac{1}{2500}
\end{aligned}
$$

$\therefore$ TSA of tank: TSA of model $=2500: 1$

## Question 10

a. Find the value of ' $K$ ' if $(x-2)$ is a factor of $x^{3}+2 x^{2}-k x+10$. Hence determine whether ( $x$ +5 ) is also a factor.

## Solution:

$f(x)=x^{3}+2 x^{2}-k x+10$
By remainder theorem,
when $f(x)$ is divided by ( $x-2$ ), the remainder is $f(2)$.

$$
\begin{align*}
f(2) & =(2)^{3}+2(2)^{2}-k(2)+10 \\
& =8+8-2 k+10 \tag{i}
\end{align*}
$$

$\mathrm{f}(2)=26-2 \mathrm{k}$
$(x-2)$ is a factor of $f(x) \quad$... given
$\therefore$ from (i) \& (ii)

$$
\begin{aligned}
26-2 \mathrm{k} & =0 \\
\therefore 2 \mathrm{k} & =26 \\
\therefore \mathrm{k} & =13
\end{aligned}
$$

$$
\therefore f(x)=x^{3}+2 x^{2}-13 x+10
$$

By remainder theorem, when $f(x)$ is divided by $(x+5)$, the remainder is $f(-5)$.

$$
\begin{aligned}
\therefore f(-5) & =(-5)^{3}+2(-5)^{2}-13(-5)+10 \\
& =-125+50+65+10 \\
& =-125+125 \\
f(-5) & =0
\end{aligned}
$$

By factor theorem $\because f(-5)=0$ $(x+5)$ is a factor of $f(x)$.
b. A manufacturer sells a washing machine to a wholesaler sells it to a trader at a profit of 1500 \& trader in turn sells it to a consumer at a profit of ` 1800 . If the rate of VAT is $\mathbf{8 \%}$, find:
(i) Amount of VAT received by State Government on sale of this machine from manufacturer \& the wholesaler.
(ii) the amount the consumer pays for the machine.

Solution:

## For manufacturer:

i) $\quad \mathrm{SP}={ }^{`} 15000$

Rate of VAT $=8 \%$
Tax received from manufacturer

$$
\text { = 8\% of } 15000
$$

$=\frac{8}{100} \times 15000$
$=` 1200$
$\therefore$ VAT received by govt. from manufacture $=` 1200$.
For wholesaler:
Profit =` 1200 Rate of VAT = 8\% Tax received from wholesaler = \(8 \%\) of 12000 \(=\frac{8}{100} \times 12000\) \(=` 96\)
$\therefore$ VHT received by govt. from wholesaler $=` 96$
ii) Total SP $=15000+1200+1800$

$$
=` 18000
$$

Rate of ST $=8 \%$
Amt. paid $=$ ?
Amt. paid $=\operatorname{SP}\left(1+\frac{\text { Rate of ST }}{100}\right)$
$=18000\left(1+\frac{8}{100}\right)$
$=18000\left(\frac{108}{100}\right)$
$\therefore$ Amt. paid by customer $={ }^{`} 19440$
c. The mean of following distribution is $\mathbf{6 2 . 8}$ and the sum of all frequencies is $\mathbf{5 0}$. Find the missing frequencies $f_{1} \& f_{2}$.

| Class | $0-20$ | $20-40$ | $40-60$ | $60-80$ | $80-100$ | $100-120$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 5 | $\mathrm{f}_{1}$ | 10 | $\mathrm{f}_{2}$ | 7 | 8 |

## Solution:

| Class | frequency |  | $\mathbf{f} \times \mathbf{x}$ |
| :---: | :---: | :---: | :---: |
|  | $\mathbf{x}$ | $\mathbf{f}$ |  |
| $0-20$ | 10 | 5 | 50 |
| $20-40$ | 30 | $\mathrm{f}_{1}$ | $30 \mathrm{f}_{1}$ |
| $40-60$ | 50 | 10 | 500 |
| $60-80$ | 70 | $\mathrm{f}_{2}$ | $70 \mathrm{f}_{2}$ |
| $80-100$ | 90 | 7 | 630 |
| $100-120$ | 110 | +8 | +880 |
|  |  | $\sum \mathrm{f}=30+\mathrm{f}_{1}+\mathrm{f}_{2}$ | $\sum \mathrm{fx}=2060+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}$ |

$$
\begin{aligned}
\text { Now, Mean } & =\frac{\sum \mathrm{fx}}{\sum \mathrm{f}} \\
\therefore 62.8 & =\frac{2060+30 \mathrm{f}_{1}+70 \mathrm{f}_{2}}{50}
\end{aligned}
$$

$$
62.8 \times 50=2060+30 f_{1}+70 f_{2}
$$

$$
3140-2060=30 \mathrm{f}_{1}+70 \mathrm{f}_{2}
$$

$$
\therefore 30 f_{1}+70 f_{2}=1080
$$

$$
\begin{equation*}
\therefore 3 f_{1}+7 f_{2}=108 \tag{i}
\end{equation*}
$$

Also, $30+\mathrm{f}_{1}+\mathrm{f}_{2}=50$

$$
\begin{equation*}
\mathrm{f}_{1}+\mathrm{f}_{2}=20 \tag{ii}
\end{equation*}
$$

Multiplying equation (ii) by 3 ,

$$
\begin{aligned}
3 \mathrm{f}_{1}+3 \mathrm{f}_{2} & =60 \\
-3 \mathrm{f}_{1}+7 \mathrm{f}_{2} & =108 \\
(-)(-)(-) & \\
\hline-4 \mathrm{f}_{2} & =-48 \\
\therefore \mathrm{f}_{2} & =\frac{48}{4} \\
\therefore \mathrm{f}_{2} & =12
\end{aligned}
$$

Substitute $f_{2}$ in equation (ii),
$\mathrm{f}_{1}+\mathrm{f}_{2}=20$
$\mathrm{f}_{1}+12=20$
$\mathrm{f}_{1}=20-12$
$\mathrm{f}_{1}=8$
Ans.: $f_{1}=\underline{8} ; \quad f_{2}=\underline{12}$

