STD: X Date: /09/2015 Marks: 80 Time: 2½hrs

[3]

[3]

Section A

(Attempt all questions of this section)

Question 1

- a. What quantity must be added to each term of ratio m + n: m n to make it equal to $(m + n)^2$: $(m n)^2$?
- b. The catalogue price of a computer set is `45000. The shopkeeper gives a discount of 7% on listed price. He gives further off season discount of 4% on balance. However, Sales Tax at 8% is charged on the remaining amount. Find:
 - (i) Amt. of Sales Tax a customer has to pay.
 - (ii) Final price he has to pay for computer set.

c. If B and C are two matrices such that $B = \begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix} \& C = \begin{bmatrix} 17 & 7 \\ -4 & -8 \end{bmatrix}$. Find the matrix A so that BA = C. [4]

Question 2

- a. Mrs. Suneeta saves `8000 every year & invests it at the end of the year at 10% p.a. Cl.
 Calculate her total savings at the end of third year. [3]
- b. Evaluate: $3 \cos 80^\circ \operatorname{cosec} 10^\circ + 2 \cos 59^\circ \operatorname{cosec} 31^\circ$.
- c. In \triangle PQR, L & M are two points on base QR, such that \angle LPQ = \angle QRP & \angle RPM = \angle RQP. Prove that:
 - i) $\Delta PQL \sim \Delta RPM$
 - ii) $QL \times RM = PL \times PM$
 - iii) $PQ^2 = QR \times QL$

[4]

[3]

[3]

Question 3

- A company with 4000 shares of nominal value of `110 each declare an annual dividend of 15%. Calculate
 - i) Total amount of dividend
 - ii) Annual income of a person who holds 88 shares in the company.
 - iii) If he received only 10% on his investment, find the price for each share. [3]
- b. The marks of 20 students in a test were as follows:

2, 6, 8, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 19 & 20. Calculate: (i)the mean, (ii) the median, (iii) the mode

The angle of elevation of a stationary cloud from a point 25 m above a lake is 30° and the c. angle of depression of its reflection in lake is 60°. What is the height of cloud above that lakelevel? [4]

Question 4

- Given A = { $x : -1 < x \le 5, x \in R$ } a. $\mathsf{B} = \{ \mathsf{x} : -4 \le \mathsf{x} < 3, \, \mathsf{x} \in \mathsf{R} \}$ Represent on different number lines: (i) $A \cap B$ (ii) $A' \cap B$ (iii) A - B
- The length of common chord of two intersecting circles is 30 cm. If the diameters of these b. two circles be 50 cm & 34 cm. Calculate the distance between their centers. [3]
- Mr. Bhalu has a Savings Bank Account in Punjab National Bank. His pass book has following c. entries:

Date	Dentiquiere	Debit	Credit	Balance
1997	Particulars	(`)	(`)	(`)
April 1	B/F	-	-	3220.00
April 15	By.T.	-	2010.00	5230.00
May 8	To Cheque	298.00	-	4932.00
July 15	By Clearing	-	4628.00	9560.00
July 29	By Cash	-	5440.00	15000.00
Sep. 10	To Self	-	6980.00	8020.00
Jan. 10 (1998)	By Cash	-	8000.00	16020.00

Calculate the interest due to him at the end of 31st March 1998 at the rate of 6% p.a.

[4]

[3]

Section B

(Attempt any four questions of this section)

Question 5

a. The marks obtained by 120 students in a mathematics test are given below:

							-			
Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
No. of students	5	9	16	22	26	18	11	6	4	3

Use Ogive to estimate

- i) Median
- ii) No. of students who scored more than 75% marks in a test
- iii) The no. of students who did not pass in test if the pass percentage was 40
- iv) The lower quartile
- b. If $x = \frac{\mathbf{6}\mathbf{a}\mathbf{b}}{\mathbf{a} + \mathbf{b}}$, find the value of: $\frac{\mathbf{x} + \mathbf{3}\mathbf{a}}{\mathbf{x} \mathbf{3}\mathbf{a}} + \frac{\mathbf{x} + \mathbf{3}\mathbf{b}}{\mathbf{x} \mathbf{3}\mathbf{b}}$.

Question 6

a. In the given figure, AC is diameter CD & BE is parallel. $optharmonomedous AOB = 80^{\circ}, optharmonomedous ACE = 10^{\circ}.$ Calculate:

i)	∟BEC
ii)	∟BCD
iii)	∟CED

[6]

[4]

- b. The ratio of base area and curved surface area of a conical tent is 40: 41. If its height is 18 m. Find the air capacity of tent in terms of π . [3]
- c. Mr. Batliwala has a R.D. Account of Rs. 300 per month. If the rate of interest is 12% & the maturity value is Rs. 8100. Find the time (in yrs.) of this R.D. Account. [4]

Question 7

a. Show that 2x + 7 is a factor of $2x^3 + 5x^2 - 11x - 14$. Hence factorize the given expression completely, using factor theorem. [3]

b. Prove that:
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$$
. [3]

c. If
$$A = \begin{bmatrix} a & 0 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & -b \\ 1 & 0 \end{bmatrix}$, $M = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ & $BA = M^2$, find values of a & b. [4]

Question 8

ABC is a right angled triangle. AB = 12 cm, AC = 13 cm. A circle with centre O has been inscribed inside the triangle. Calculate the value of x, the radius of inscribed circle.

- b. The diameter of a sphere is 6 cm. It is melted & drawn into a wire of diameter
 0.2 cm. Find the length of the wire.
- c. Mr. Ram Gopal invested `8000 in 7% `80. After a year he sold these shares at `75 each & invested the proceeding (including his dividend) in 18% `25 shares at `41. Find:
 - i) Dividend for first year
 - ii) Annual income in second year

[4]

[3]

Question 9

- a. During every financial year, the value of a machine depreciates by 12%. Find the original cost of a machine which depreciates by Rs.2640 during second financial year of its purchase. [3]
- b. A open cylindrical vessel of internal diameter 7 cm & height 8 cm stands on a table. Inside this is place a solid metallic right circular cone, the diameter of whose base is $3\frac{1}{2}$ cm & height = 8 cm. Find volume of water required to fill the vessel. [3]
- c. A rectangular tank has length = 4 cm, width = 3 m & capacity = 30 m^3 . A small model of tank is made with capacity 240 cm³. Find:
 - i) Dimensions of model
 - ii) Ratio between total surface area of tank and its model. [4]

Question 10

- a. Find the value of 'K' if (x 2) is a factor of $x^3 + 2x^2 kx + 10$. Hence determine whether (x + 5) is also a factor. [3]
- A manufacturer sells a washing machine to a wholesaler sells it to a trader at a profit of `1500 & trader in turn sells it to a consumer at a profit of `1800. If the rate of VAT is 8%, find:
 - (i) Amount of VAT received by State Government on sale of this machine from manufacturer & the wholesaler.
 - (ii) the amount the consumer pays for the machine.
- c. The mean of following distribution is 62.8 and the sum of all frequencies is 50. Find the missing frequencies $f_1\& f_2$. [4]

Class	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	5	f ₁	10	f ₂	7	8

[3]

Answer key

Section A

(Attempt all questions of this section)

Question 1

a. What quantity must be added to each term of ratio m + n : m - n to make it equal to $(m + n)^2 : (m - n)^2$? [3]

Solution:

Let 'x' be added to each term of given ratio.

.: According to given condition,

$$\frac{m+n+x}{m-n+x} = \frac{(m+n)^2}{(m-n)^2}$$

$$\therefore \frac{m+n+x}{m-n+x} = \frac{m^2 + 2mn + n^2}{m^2 - 2mn + n^2}$$
By Dividendo, we get,
$$\frac{m+n+x-(m-n+x)}{m-n+x} = \frac{m^2 + 2mn + n^2 - (m^2 - 2mn + n^2)}{m^2 - 2mn + n^2}$$

$$\frac{m+n+x-m+n-x}{m-n+x} = \frac{m^2 + 2mn + n^2 - m^2 + 2mn - n^2}{m^2 - 2mn + n^2}$$

$$\frac{2n}{m-n+x} = \frac{4mn}{m^2 - 2mn + n^2}$$

$$\therefore 2n(m^2 - 2mn + n^2) = 4mn(m - n + x)$$

$$m^2 - 2mn + n^2 = 2m(m - n + x)$$

$$\therefore m^2 - 2mn + n^2 = 2m^2 - 2mn + 2mx$$

$$m^2 - 2m^2 + n^2 = 2mx$$

$$\therefore n^2 - m^2 = 2mx$$

$$\therefore x = \frac{n^2 - m^2}{2m}$$

Required no. to be added is

$$\therefore \mathbf{x} = \frac{\mathbf{n}^2 - \mathbf{m}^2}{2\mathbf{m}}$$

b. The catalogue price of a computer set is `45000. The shopkeeper gives a discount of 7% on listed price. He gives further off season discount of 4% on balance. However, Sales Tax at 8% is charged on the remaining amount. Find:

(i) Amt. of Sales Tax a customer has to pay.

(ii) Final price he has to pay for computer set.

[3]

Solution:

Marked Priced (MP) = 45000Discount d₁ = 7% d₂ = 4%

Rate of ST = 8%
Sale Price = MP
$$\left(1 + \frac{d_1}{100}\right)\left(1 + \frac{d_2}{100}\right)$$

= 45000 $\left(\frac{1}{1} + \frac{7}{100}\right)\left(\frac{1}{1} + \frac{4}{100}\right)$
= 45000 × $\frac{93}{100}$ × $\frac{96}{100}$
= `9 × 93 × 48
Sale Price = `40,176
i) Sales Tax (`) = $\frac{\text{Rate of ST}}{100}$ × SP
= $\frac{8}{100}$ × 40176
Sales Tax (`) = `3214.08
ii) Final price for
computerset
= 40176 + 3214.08
 \therefore Final Price = `43390.08

c. If B and C are two matrices such that $B = \begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix} \& C = \begin{bmatrix} 17 & 7 \\ -4 & -8 \end{bmatrix}$. Find the matrix A so that BA = C. [4]

Solution:

$$\begin{split} B_{2\times 2} \cdot A_{m\times n} &= C_{2\times 2} \\ \text{Using the rule for matrix multiplication} \\ p \times q \cdot q \times r &= p \times r \\ q &= 2, \quad r &= 2 \\ \therefore \text{ Order of matrix } A &= 2 \times 2 \\ \text{Let } A &= \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ & BA &= C \\ \begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} &= \begin{bmatrix} 17 & 7 \\ -4 & -8 \end{bmatrix} \\ \begin{bmatrix} 1(a) + 3(c) & 1(b) + 3(d) \\ -2(a) + 0(c) & -2(b) + 0(d) \end{bmatrix} &= \begin{bmatrix} 17 & 7 \\ -4 & -8 \end{bmatrix} \\ & \begin{bmatrix} a + 3c & b + 3d \\ -2a & -2b \end{bmatrix} = \begin{bmatrix} 17 & 7 \\ -4 & -8 \end{bmatrix} \end{split}$$

Since matrices are equal, their corresponding elements are equal,

a + 3c = 17 ... (i)

... (ii) b + 3d = 7 -2a = -4∴ a = 2 -2b = -8∴ b = 4 Substituting a = 2 in (i) a + 3c = 172 + 3c = 173c = 17 - 23c = 15∴ c = 5 Substituting b = 4 in (ii) b + 3d = 74 + 3d = 7 $\therefore 3d = 7 - 4$ ∴ 3d = 3 ∴ d = 1 $\therefore \mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 5 & 1 \end{bmatrix}$

Question 2

a. Mrs. Suneeta saves `8000 every year & invests it at the end of the year at 10% p.a. Cl. Calculate her total savings at the end of third year. [3]

Solution:

For 1st year:
P = `0
R = 10% p.a.
T = 1 year
I =
$$\frac{P \times R \times T}{100}$$
 = `0
A = P + I + savings
= 0 + 0 + 8000
A = `8000
For 2ndyear:
P = `8000
R = 10% p.a.
T = 1 year
I = $\frac{P \times R \times T}{100}$
I = $\frac{8000 \times 10 \times 1}{100}$ = `800
A = P + I + savings

= 8000 + 800 + 8000 = 16800For 3rdyear: P = 16800R = 10% p.a. T = 1 year $I = \frac{P \times R \times T}{P \times R \times T}$ 100 $I = \frac{16800 \times 10 \times 1}{1000} = 1680$ 100 A = P + I + savings= 16800 + 1680 + 8000A = 26,480

Evaluate: 3 cos 80° cosec 10° + 2 cos 59° cosec 31°. b.

[3]

Solution:

 $3\cos 80^{\circ}\cos 10^{\circ} + 2\cos 59^{\circ}\cos 31^{\circ}$ $= 3 \sin (90 - 80)^{\circ} \cos (10^{\circ} + 2 \sin (90 - 59)^{\circ} \cos (31^{\circ}))$ = $3 \sin 10^{\circ} \cos 10^{\circ} + 2 \sin 31^{\circ} \cos 31^{\circ}$ $= 3 \times 1 + 2 \times 1$ $\dots \sin \theta \cdot \operatorname{cosec} \theta = 1$ = 3 + 2= 5

- In \triangle PQR, L & M are two points on base QR, such that \angle LPQ = \angle QRP & \angle RPM = \angle RQP. C. **Prove that:**
 - i) $\triangle PQL \sim \triangle RPM$ ii) $QL \times RM = PL \times PM$ iii) $PQ^2 = QR \times QL$ [2003]

Solution:

Given: $\angle LPQ = \angle QRP$ $\angle RPM = \angle RQP$ To prove: i) $\triangle PQL \sim \triangle RPM$ ii) $QL \times RM = PL \times PM$

iii)	PQ ²	= QR	×	QL
Pro	oof:			

	Statement	Reason
1)	In \triangle PQL & \triangle RPM,	
	∠PQL = ∠RPM	Given
	∠LPQ = ∠MRP	Given
2)	$\Delta PQL \sim \Delta RPM$	By AA axiom of similarity

3)	$\frac{\text{QM}}{\text{PM}} = \frac{\text{PL}}{\text{RM}}$	c.s.s.t.p.
	\therefore QL × RM = PL × PM	
4)	In ∆PQL &∆RQP,	
	∠PQL = ∠RQP	Common angle
	∠LPQ = ∠PRQ	Given
5)	$\Delta PQL \sim \Delta RQP$	By AA axiom of similarity
6)	$\frac{PQ}{RQ} = \frac{QL}{QP}$	c.s.s.t.p.
	$\therefore PQ \times PQ = QR \times QL$ $\therefore (PQ)^2 = QR \times QL$	hence proved

Question 3

- a. A company with 4000 shares of nominal value of `110 each declare an annual dividend of 15%. Calculate
 - i) Total amount of dividend
 - ii) Annual income of a person who holds 88 shares in the company.
 - iii) If he received only 10% on his investment, find the price for each share. [3]

Solution:

```
Face Value (FV) = 110
   Rate of dividend = 15\%
        No. of shares = 4000
                Return % = 10%
   \mathsf{Dividend} = \begin{pmatrix} \mathsf{Rate of} \\ \mathsf{dividend} \end{pmatrix} \times \mathsf{FV} \times \begin{pmatrix} \mathsf{No.of} \\ \mathsf{Shares} \end{pmatrix}
i)
                                       =\frac{15}{100} \times 100 \times 4000
                    Dividend = 66000
ii)
           No. of shares = 88
      \mathsf{Dividend} = \begin{pmatrix} \mathsf{Rate of} \\ \mathsf{dividend} \end{pmatrix} \times \mathsf{FV} \times \begin{pmatrix} \mathsf{No. of} \\ \mathsf{Shares} \end{pmatrix}
                                      =\frac{15}{100} \times 110 \times 88
                                       = 33 \times 44
                    Dividend = 1452
 iii) Return% \times MV = Dividend% \times FV
 \frac{10}{100} \times MV = \frac{15}{100} \times 100
                              MV = \frac{15}{100} \times 110 \times \frac{100}{10}
```

b. The marks of 20 students in a test were as follows:
2, 6, 8, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 19 & 20.
Calculate: (i)the mean, (ii) the median, (iii) the mode [3]

Solution:

i)
$$\sum x = 2 + 6 + 8 + 9 + 10 + 11 + 11 + 12 + 13 + 13 + 14 + 14 + 15 + 15 + 15 + 16 + 16 + 18 + 19 + 20.
 $\sum x = 257$
 $n = 20$
Mean $= \frac{\sum x}{n}$
 $= \frac{257}{20}$
Mean $= \frac{12.85}{2}$
ii) N = 20 (even)
Median $= \frac{\left(\frac{n}{2}\right)^{\text{th}} \text{term} + \left(\frac{n}{2} + 1\right)^{\text{th}} \text{term}}{2}$
 $= \frac{\left(\frac{20}{2}\right)^{\text{th}} \text{term} + \left(\frac{20}{2} + 1\right)^{\text{th}} \text{term}}{2}$
 $= \frac{10^{\text{th}} \text{term} + 11^{\text{th}} \text{term}}{2}$
 $= \frac{13 + 14}{2}$
 $= \frac{27}{2}$
Median = 13.5$$

- iii) No. with highest frequency = 15 \therefore Mode = 15
- c. The angle of elevation of a stationary cloud from a point 25 m above a lake is 30°& the angle of depression of its reflection in lake is 60°. What is the height of cloud above that lake-level? \Box_{C} [4]

Solution:

AB = Lake level

- C = Stationary cloud
- D = Image of cloud

 $\angle CPE = 30^{\circ}$ (Angle of elevation of S. claud) $\angle DPE = 60^{\circ}$ (Angle of depression of its reflection) From figure, $\Box PQFB$ is a rectangle

PQ = EF = 25 m PE = QF Also, CF = DF (Laws of reflection) In right \triangle CEP, In right \triangle DEP, Opp. opp.

tan 30° =
$$\frac{Opp.}{Adj.}$$

 $\frac{1}{\sqrt{3}} = \frac{CE}{PE}$
 $PE = \sqrt{3} \cdot CE$
 $CE = \frac{ED}{\sqrt{3}}$
 $\therefore \sqrt{3} \cdot CE = \frac{ED}{\sqrt{3}}$
 $\therefore ED = 3CE$
 $\therefore EF + DF = 3[CF - EF]$
 $\therefore 25 + CF = 3CF - 3 \times 25 \dots (DF = CF)$
 $\therefore 25 + CF = 3CF - 75$
 $100 = 2CF$
 $\therefore CF = 50 m$
Ans.: Height of cloud above lake level = 50 m.

Question 4

a. Given $A = \{x : -1 < x \le 5, x \in R\}$

 $\mathsf{B} = \{ x : -4 \le x < 3, x \in \mathsf{R} \}$

Represent on different number lines:

(i) $A \cap B$ (ii) $A' \cap B$ (iii) A - B

Solution:

i) For $A \cap B$:

S.S. = { $x : -1 < x < 3, x \in R$ }

The graph of $A \cap B$ is:

-2 −1 0 1 2 3 4 5

[3]

ii) For $A' \cap B = B - A$:

 $S.S.=\{x:-4\leq x\leq -1,\ x\in R\}$

The graph of $A' \cap B$ is:

iii) For A – B:

 $S.S.=\{x:3\leq x\leq 5,\ x\in R\}$

The graph of (A - B) is:

b. The length of common chord of two intersecting circles is 30 cm. If the diameters of these two circles be 50 cm & 34 cm. Calculate the distance between their centers. [3]

Solution:

Statement

Reason

1) PQ \perp AB Line joining centres bisects the common chord Perpendicularly. 2) AR $= \frac{1}{2} AB = \frac{1}{2} \times 30$ from (1),substitution. $\therefore AR = 15 cm$ 3) AP $= \frac{1}{2}(34) = 17 cm r = \frac{d}{2} \& given$ AQ $= \frac{1}{2}(50) = 25 cm$ 4) In rt \triangle ARP, (AP)² = (AR)² + (PR)² Pythagoras theorem $\therefore (PR)^2 = (AP)^2 - (AR)^2$ $= (17)^2 - (15)^2$ from 2 & 3 = 289 - 225 = 64 Taking sq. root on.both sides

$$PR = 8cm$$

5) In rt Δ ARQ, (AQ)² = (AR)² + (RQ)² Pythagoras theorem

$$(RQ)^{2} = (AQ)^{2} - (AR)^{2}$$

$$= (25)^{2} - (15)^{2} \quad \text{from 2 \& 3}$$

$$= 625 - 225$$

$$(RQ)^{2} = 400 \quad \text{Taking sq. root on both sides P - R - Q}$$

$$RQ = 20 \text{ cm}$$

$$P - R - Q$$

$$= 8 + 20$$

$$\therefore PQ = 28 \text{ cm}$$

c. Mr. Bhalu has a Savings Bank Account in Punjab National Bank. His pass book has following entries:

Date	Particulara	Debit	Credit	Balance
1997	Farticulars	()	()	()
April 1	B/F	-	-	3220.00
April 15	By.T.	-	2010.00	5230.00
May 8	To Cheque	298.00	-	4932.00
July 15	By Clearing	-	4628.00	9560.00
July 29	By Cash	-	5440.00	15000.00
Sep. 10	To Self	-	6980.00	8020.00
Jan. 10 (1998)	By Cash	-	8000.00	16020.00

Calculate the interest due to him at the end of 31st March 1998 at the rate of 6% p.a. [4]

Solution:

Qualifying amount for various months:

Month	Principal
April, 1997	3220.00
May	4932.00
June	4932.00
July	4932.00
August	15000.00
September	8020.00
October	8020.00
November	8020.00
December	8020.00
January, 1998	16020.00
February	16020.00
March	+ 16020.00

Month	Principal
Total	` 113156.00

For Interest:

Principal (P) = `113156.00

Rate (R) = 6% p.a.

Time (T) =
$$\frac{1}{12}$$
 yr.
I = $\frac{P \times R \times T}{100}$
= $\frac{113156 \times 6 \times 1}{100 \times 12}$
= $\frac{56578}{100}$
 \therefore I = `565.78

Section B

(Attempt any four questions of this section)

Question 5

a. The marks obtained by 120 students in a mathematics test are given below:

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
No. of students	5	9	16	22	26	18	11	6	4	3

Use Ogive to estimate

- i) Median
- ii) No. of students who scored more than 75% marks in a test
- iii) The no. of students who did not pass in test if the pass percentage was 40
- iv) The lower quartile

Solution:

Marks	No. of Students f	Cumulative frequency c.f.	(x, y)
0-10	5	5	(10, 5)
10-20	9	5 + 9 = 14	(20, 14)
20-30	16	14 + 16 = 30	(30, 30)
30-40	22	30 + 22 = 52	(40, 52)

[6]

iv) Lower Quartile (Q₁) =
$$\left(\frac{1}{4}\right)^{\text{term}}$$

= $\left(\frac{120}{4}\right)^{\text{th}}$ term
= 30th term
Q₁ = 30

b. If
$$x = \frac{6ab}{a+b}$$
, find the value of: $\frac{x+3a}{x-3a} + \frac{x+3b}{x-3b}$. [4]

Solution:

$$x = \frac{6ab}{a+b} \qquad \dots \text{ given}$$
$$\therefore \frac{x}{3a} = \frac{2b}{a+b}$$

By Componendo-Dividendo, we get,

$$\frac{x+3a}{x-3a} = \frac{2b+a+b}{2b-a-b}$$

$$\therefore \frac{x+3a}{x-3a} = \frac{3b+a}{b-a} \qquad \dots (i)$$

$$x = \frac{6ab}{a+b} \qquad \dots \text{ given}$$

$$\frac{x}{3b} = \frac{2a}{a+b}$$
By Componendo-Dividendo, we get,

$$\frac{x+3b}{x-3b} = \frac{2a+a+b}{2a-a-b}$$

$$\therefore \frac{x+3b}{x-3b} = \frac{3a+b}{a-b} \qquad \dots (ii)$$
Add (i) & (ii), we get,

$$\frac{x+3a}{x-3a} + \frac{x+3b}{x-3b} = \frac{3b+a}{b-a} + \frac{3a+b}{a-b}$$

$$= \frac{3b+a}{b-a} - \frac{3a+b}{a-b}$$

$$= \frac{3b+a-3a-b}{b-a}$$

$$= \frac{2b-2a}{b-a}$$

$$= \frac{2b-2a}{b-a}$$

$$= \frac{2(b-a)}{(b-a)}$$

Question 6

- a. In the given figure, AC is diameter CD & BE are parallel. $riangle AOB = 80^{\circ}$, $riangle ACE = 10^{\circ}$. Calculate:
 - i) ∟BEC
 - ii) ∟BCD
 - iii) ∟CED

Solution:

Statement

1)
$$\Box AOB + \Box BOC = 180^{\circ}$$

2)
$$80^{\circ} + \bot BOC = 180^{\circ}$$

3)
$$\Box BEC = \frac{1}{2} \Box BOC$$

$$\Box \ \ \Box BEC = \frac{1}{2} \times 100^{\circ} = 50$$
4)
$$\Box DCE = \Box BEC$$

$$\therefore \ \ \Box DCE = 50^{\circ}$$
5)
$$\Box ACB = \frac{1}{2} \Box AOB$$

E A C

Reason

Linear pair Substitution. $\Box BOC = 100^{\circ}$ Central \Box s is twice the angle at remaining

circumference.

alternate □s.

Central \Box s is twice are angle at remaining circumference.

[3]

b. The ratio of base area and curved surface area of a conical tent is 40: 41. If its height is 18 m. Find the air capacity of tent in terms of π . [3]

Solution:
For conical tent:
Height (h) = 18 m
According to given condition,

$$\frac{\text{Area of base}}{\text{Curved surface area}} = \frac{40}{41}$$

$$\frac{\pi r^2}{\pi r l} = \frac{40}{41}$$
r : l = 40 : 41

radius (r) =
$$40x$$
;

slant height(*l*) = 41*x* $l^{2} = h^{2} + r^{2}$... Pythagoras theorem $(41x)^{2} = (18)^{2} + (40x)^{2}$ $1681x^{2} = 324 + 1600x^{2}$ $\therefore 1681x^{2} - 1600x^{2} = 324$ $81x^{2} = 324$ $x^{2} = \frac{324}{81} = 4$... Taking square root on both sides x = 2 $r = 40x = 40 \times 2 = 80$ cm Air capacity of tent = Volume of cone $= \frac{1}{3}\pi r^{2}h$ $= \frac{1}{3}\pi (80)^{2} \times 18$ \therefore Air capacity of tent = $\frac{38400 \text{ m}^{3}}{3}$ c. Mr. Batliwala has a R.D. Account of Rs. 300 per month. If the rate of interest is 12% & the maturity value is Rs. 8100. Find the time (in yrs.) of this R.D. Account. [4]

Solution:

Monthly Installment = ` 300 Let No. of months be 'n'. Equivalent Principal for 1 month (P) = MI $\times \frac{n(n+1)}{2}$ $= 300 \times \frac{n(n+1)}{2}$ $\therefore P = 150 n(n+1)$ Rate (R) = 12% p.a. Time (T) = $\frac{1}{12}$ yr. $I = \frac{P \times R \times T}{100}$ $= \frac{150 n(n+1) \times 12 \times 1}{100 \times 12}$ $I = \frac{5n(n+1)}{10}$ Actual deposit = $MI \times n$ = 300 × n = `300n Maturity Value = $\begin{pmatrix} Actual \\ deposit \end{pmatrix}$ + Interest $\therefore 8100 = 300n + \frac{15n(n+1)}{10}$ $8100 = \frac{600n + 3n^2 + 3n}{2}$ $\therefore 3n^2 + 603n = 16200$ Divide each term by 3, we get, $n^2 + 201n - 5400 = 0$ $n^2 + 225n - 24n - 5400 = 0$ n(n + 225) - 24(n + 225) = 0(n + 225) (n - 24) = 0n + 225 - 0 = 0n - 24 = 0or n = -225n = 24 or 'n' cannot be negative

... (Factorizing left side)

... (Zero product rule)

 \therefore n = 24 months

:. Time =
$$\frac{24}{12}$$
 = 2 yrs.

Question 7

a. Show that 2x + 7 is a factor of $2x^3 + 5x^2 - 11x - 14$. Hence factorize the given expression completely, using factor theorem. [3]

Solution:

$$f(x) = 2x^{3} + 5x^{2} - 11x - 14$$

By remainder theorem, when f(x) is divided by (2x + 7),
the remainder is $f\left(-\frac{7}{2}\right)$
$$f\left(-\frac{7}{2}\right) = 2\left(-\frac{7}{2}\right)^{3} + 5\left(-\frac{7}{2}\right)^{2} - 11\left(-\frac{7}{2}\right) - 14$$

$$f\left(-\frac{7}{2}\right) = 2\left(\frac{-343}{8}\right) + 5\left(\frac{49}{4}\right) + \frac{77}{2} - \frac{14}{1}$$

$$f\left(-\frac{7}{2}\right) = -\frac{343}{4} + \frac{245}{4} + \frac{77}{2} - \frac{14}{1}$$

$$f\left(-\frac{7}{2}\right) = \frac{-343 + 245 + 154 - 56}{4}$$

$$f\left(-\frac{7}{2}\right) = \frac{-399 + 399}{4}$$

$$f\left(-\frac{7}{2}\right) = \frac{0}{4} = 0$$

By factor theorem, $\because f\left(-\frac{7}{2}\right) = 0$ (2x + 7) is a factor of f(x).

For other factors:

$$\begin{array}{c|c} x^2 - x - 2 \\ \hline 2x + 7 \end{array} & \begin{array}{c} x^2 - x - 2 \\ 2x^3 + 5x^2 - 11x - 14 \\ - 2x^3 + 7x^2 \\ \hline (-) & (-) \\ -2x^2 - 11x - 14 \\ - -2x^2 - 7x \\ \hline (+) & (+) \\ \hline -4x - 14 \\ \hline (+) & (+) \\ \hline (+) \\ \hline (+) \\ \hline (x) \end{array}$$

$$f(x) = 2x^3 + 5x^2 - 11x - 14 \\ f(x) = (2x + 7)(x^2 - x - 2) \\ = (2x + 7)(x^2 - 2x + x - 2) \\ = (2x + 7)[x(x - 2) + 1(x - 2)] \\ \therefore f(x) = (2x + 7)(x - 2)(x + 1) \end{array}$$

b. Prove that:
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$$
. [3]

Solution:

L.H.S. =
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2$$

= $\sin^2 A + 2 \sin A \cdot \csc A + \csc^2 A + \csc^2 A + \cos^2 A + 2 \cos A \cdot \sec A + \sec^2 A$
... $(a + b)^2 = a^2 + 2ab + b^2$
= $\sin^2 A + \csc^2 A + 2 + \csc^2 A + 2 + \sec^2 A$
... $\sin\theta \times \csc \theta = 1 \& \sec \theta \times \cos \theta = 1$
= $1 + \csc^2 A + 2 + 2 + \sec^2 A \dots \sin^2 \theta + \cos^2 \theta = 1$
= $5 + 1 + \cot^2 A + 1 + \tan^2 A$
... $\csc^2 \theta = 1 + \cot^2 \theta \& \sec^2 \theta = 1 + \tan^2 \theta$
= $7 + \tan^2 A + \cot^2 A$
... hence proved.

c. If
$$A = \begin{bmatrix} a & 0 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & -b \\ 1 & 0 \end{bmatrix}$, $M = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ & $BA = M^2$, find values of a & b. [4]

Solution:

$$BA = M^{2} \dots \text{ given}$$
$$BA = M \cdot M$$
$$\begin{bmatrix} 0 & -b \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0(a) + b(0) & 0(0) + b(2) \\ 1(a) + 0(0) & 1(0) + 0(2) \end{bmatrix} = \begin{bmatrix} 1(1) + (-1)1 & 1(-1) + (-1)1 \\ 1(1) + (1)(1) & 1(-1) + 1(1) \end{bmatrix}$$
$$\begin{bmatrix} 0 & -2b \\ a & 0 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$$

Since the matrices are equal, their corresponding elements are also equal.

-2b = -2 & ∴ b = 1 Ans.: a = 2, b = 1

Question 8

ABC is a right angled triangle. AB = 12 cm,
 AC = 13 cm. A circle with centre O has been
 inscribed inside the triangle. Calculate the value of
 x, the radius of inscribed circle. [3]

a = 2

Statement

Reason

... Radii of same circle

... Pythagoras theorem

3) ∴ OP = BP = BR = x

1) OP = OR = OQ = x

2) \Box OPBR is a square

x ... from (1)&(2)

equal

... Substitution

... A-R-B

. . .

. . .

... from 3 & given

B-P-C

... from (6)& (8)

... A-Q-C

- 4) In right $\triangle ABC$,
 - $(AC)^2 = (AB)^2 + (BC)^2$ (13)² = (12)² + (BC)² (BC)² = 169 - 144 BC² = 25

BC = 5 cm

... Taking square root on both sides

... : Each Angle is 90°& Adjacent sides are

... Tangents from ext. point are equal

Tangents from exterior point are equal

- $6) \quad AQ = AB BR$
 - AQ = (12 x)
- 7) CP = CQ

5) AR = AQ

- 8) CQ = BC BP
- CQ = (5 x)9) AC = AB + QC

13 = 12 - x + 5 - x 13 = 17 - 2x 2x = 4x = 2 cm

Radius = x = 2 cm

b. The diameter of a sphere is 6 cm. It is melted & drawn into a wire of diameter 0.2 cm. Find the length of the wire.

Solution:

For sphere:

Diameter = 6 cm Radius (r_s) = $\frac{6}{2}$ = 3 cm

For cylindrical wire:

Diameter = 0.2 cm Radius = $\frac{0.2}{2} = 0.1$ cm Length = Height = ? According to given condition, $\frac{4}{3}\pi r_s^3 = \pi r^2 h$ $\therefore \frac{4}{3} \times (3)^2 = (0.1)^2 \times h$ $h = \frac{4 \times 9}{0.1 \times 0.1} = \frac{36}{0.01} = 3600$ cm = 36 cm \therefore Length of wire = 36 m

- c. Mr. Ram Gopal invested `8000 in 7% `80. After a year he sold these shares at `75 each & invested the proceeding (including his dividend) in 18% `25 shares at `41. Find:
 - i) Dividend for first year
 - ii) Annual income in second year
 - iii) Percentage increases in his return on his original investment. [4]

Solution:

```
For first year:

Investment = `8000

Face Value (FV) = `100

Market Value (MV) = `80

Rate of dividend = 7%

i) No. of shares = \frac{\text{Investment}}{\text{MV}}

= \frac{8000}{80}

= 100 \text{ shares}

Dividend=\binom{\text{Rate of}}{\text{dividend}} \times \text{FV} \times \binom{\text{No. of}}{\text{Shares}}

= \frac{7}{100} \times 100 \times 100
```

Dividend = `700 -----For Second Year: SP of 1 share = 75SP of 100 shares = `7500 Sale Proceeds = 7500Investment = Sale Proceed + Dividend = 7500 + 700= `8200 ----- 1m Face Value (FV) = 25Market Value (MV) = 41 Rate of dividend = 18%ii) No. of shares = $\frac{\text{Investment}}{\text{MV}}$ $=\frac{8200}{41}=200$ $Dividend = \begin{pmatrix} Rate of \\ dividend \end{pmatrix} \times FV \times \begin{pmatrix} No. of \\ Shares \end{pmatrix}$ $= \frac{18}{100} \times 25 \times 200$ Dividend = `900 -----1m iii) Increase in Income = 900 - 700= `200 Percentage Increase= OriginalInv.

 $= \frac{200}{8000} \times 100$ Percentage Increase = 2.5 % -----1m

Question 9

a. During every financial year, the value of a machine depreciates by 12%. Find the original cost of a machine which depreciates by Rs.2640 during second financial year of its purchase. [3]

Solution:

For 1st year: Principal (P) = `P ... (assumption) Rate (R) = 12% p.a. Time (T) = 1 year I = $\frac{P \times R \times T}{100}$ $= \begin{pmatrix} \text{Dividend} \\ \text{in } 2^{\text{nd}} \text{ vear} \end{pmatrix} - \begin{pmatrix} \text{Divide} \\ \text{in } 1^{\text{st}} \text{ vear} \end{pmatrix}$

 $=\frac{P\times 12\times 1}{100}$ $I = \frac{12P}{100}$... (∵depreciation) A = P + I $A = P - \frac{12P}{100} = \frac{88P}{100}$ For 2ndyear: $\mathsf{P} = \frac{88\mathsf{P}}{100}$ R = 12% p.a. T = 1 year $I = \frac{P \times R \times T}{100}$ $2640 = \frac{88P \times 12 \times 1}{100 \times 100}$ $\therefore \quad \mathsf{P} = \frac{2640 \times 100 \times 100}{88 \times 12}$ *.*.. P = `2500 Ans.: The original cost of a machine =`25000.

b. A open cylindrical vessel of internal diameter 7 cm & height 8 cm stands on a table. Inside this is place a solid metallic right circular cone, the diameter of whose base is $3\frac{1}{2}$ cm & height = 8 cm. Find volume of water required to fill the vessel. [3]

Solution:
For cylindrical vessel,
Diameter = 7 cm
Radius (r) =
$$\frac{7}{2}$$
 cm
Height (h) = 8 cm
For solid metallic cone,
Diameter = $\frac{7}{2}$ cm
Radius (r_c) = $\frac{7}{4}$ cm
Height (h) = 8 cm ... same as cylindrical vessel
According to given condition,
(Volume of water
to fill the vessel) = (volume of
cylindrical vessel) - (Volume of
solid cone)

$$= \pi r^{2}h - \frac{1}{3}\pi r_{c}^{2}h$$

$$= \pi h \left[r^{2} - \frac{1}{3}r_{c}^{2} \right]$$

$$= \frac{22}{7} \times 8 \left[\left(\frac{7}{2} \right)^{2} - \frac{1}{3} \times \left(\frac{7}{4} \right)^{2} \right]$$

$$= \frac{22}{7} \times 8 \left[\frac{49}{4} - \left(\frac{1}{3} \times \frac{49}{16} \right) \right]$$

$$= \left[\frac{49}{4} - \frac{49}{48} \right]$$

$$= \left[\frac{588 - 49}{48} \right]$$

$$= \frac{22}{7} \times 8 - - \times \frac{539}{48}$$

$$= \frac{847}{3} = 282.33$$

$$r = 282.33 \text{ cm}^{3}$$

Volume of water = 282.33 cm^3

c. A rectangular tank has length = 4 cm, width = 3 m & capacity = 30 m³. A small model of tank is made with capacity 240 cm³. Find:

[4]

- i) Dimensions of model
- ii) Ratio between total surface area of tank and its model.

Solution:

For rectangular tank, Capacity = Vol. of cuboids $30 = l \times b \times h$ $\therefore h = \frac{30}{4 \times 3} = 2.5 \text{ cm}$ * <u>Volume of model</u> Volume of tank = k³ $\therefore \frac{240 \text{ cm}^3}{30 \text{ m}^3} = k^3$ $k^3 = \frac{240 \text{ cm}^3}{30 \times 100 \times 100 \text{ cm}^3}$

Taking cube root on both sides

 $k = \frac{2}{100}$ $k = \frac{1}{50}$

 $\frac{\text{length of model}}{\text{length of tank}} = k$ i) length of model = $\frac{1}{50} \times 4$ m length of model = $\frac{1}{50} \times 400$ cm = 8 cm breadth of model = kbreadth of tank \therefore breadth of model = $\frac{1}{50} \times 3$ cm $=\frac{1}{50} \times 300 \text{ cm}$... breadth of model = 6 cm $\frac{\text{Height of model}}{k} = k$ Height of tank Height of model = $\frac{1}{50} \times 2.5$ m $=\frac{1}{50} \times 250 \text{ cm}$ Height of model = 5 cmTotal surface area of model $= k^2$ ii) T.S.Area of tank $=\left(\frac{1}{50}\right)^2$ $=\frac{1}{2500}$ ∴ TSA of tank : TSA of model = 2500 : 1 **Question 10** Find the value of 'K' if (x - 2) is a factor of $x^3 + 2x^2 - kx + 10$. Hence determine whether (x a. + 5) is also a factor. [3] Solution: $f(x) = x^3 + 2x^2 - kx + 10$ By remainder theorem, when f(x) is divided by (x - 2), the remainder is f(2). $f(2) = (2)^3 + 2(2)^2 - k(2) + 10$ = 8 + 8 - 2k + 10f(2) = 26 - 2k... (i) (x-2) is a factor of f(x) ... given ∴ from (i) & (ii) 26 - 2k = 0∴ 2k = 26

∴ k = 13

 $f(x) = x^3 + 2x^2 - 13x + 10$ By remainder theorem, when f(x) is divided by (x + 5), the remainder is f(-5). $f(-5) = (-5)^3 + 2(-5)^2 - 13(-5) + 10$ = -125 + 50 + 65 + 10 = -125 + 125f(-5) = 0 By factor theorem ∵ f(-5) = 0 (x + 5) is a factor of f(x).

- A manufacturer sells a washing machine to a wholesaler sells it to a trader at a profit of `1500 & trader in turn sells it to a consumer at a profit of `1800. If the rate of VAT is 8%, find:
 - (i) Amount of VAT received by State Government on sale of this machine from manufacturer & the wholesaler.
 - (ii) the amount the consumer pays for the machine.

[3]

Solution:

For manufacturer:

SP = `15000 i) Rate of VAT = 8%Tax received from manufacturer = 8% of 15000 $=\frac{8}{100} \times 15000$ =`1200 \therefore VAT received by govt. from manufacture = 1200. For wholesaler: Profit = 1200Rate of VAT = 8%Tax received from wholesaler = 8% of 12000 $=\frac{8}{100} \times 12000$ = `96 .:. VHT received by govt. from wholesaler = `96 = 15000 + 1200 + 1800ii) Total SP = `18000 Rate of ST = 8%Amt. paid = ? Amt. paid = $SP\left(1 + \frac{\text{Rate of ST}}{100}\right)$ $= 18000 \left(1 + \frac{8}{100} \right)$ $= 18000 \left(\frac{108}{100} \right)$

c. The mean of following distribution is 62.8 and the sum of all frequencies is 50. Find the missing frequencies f₁& f₂. [4]

Class	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	5	f1	10	f2	7	8

Solution:

Clas	Class		frequency	$\mathbf{f} \times \mathbf{x}$					
	UID	X	f						
	0-20	10	5	50					
	20-40	30	f1	30 f ₁					
	40-60	50	10	500					
	60-80	70	f2	70f ₂					
	80-100	90	7	630					
	100-120	110	+ 8	+ 880					
			$\sum f = 30 + f_1 + f_2$	$\sum fx = 2060 + 30f_1 + 70f_2$					
	Now, Mean = $\frac{\sum fx}{\sum f}$ $\therefore 62.8 = \frac{2060 + 30f_1 + 70f_2}{50}$ $62.8 \times 50 = 2060 + 30f_1 + 70f_2$ $3140 - 2060 = 30f_1 + 70f_2$ $\therefore 30f_1 + 70f_2 = 1080$ $\therefore 3f_1 + 7f_2 = 108$ (i) Also, $30 + f_1 + f_2 = 50$ $f_1 + f_2 = 20$ (ii) Multiplying equation (ii) by 3, $3f_1 + 3f_2 = 60$ $-3f_1 + 7f_2 = 108$ (-) (-)(-) $-4f_2 = -48$ $\therefore f_2 = \frac{48}{4}$ $\therefore f_2 = 12$ Substitute f_2 in equation (ii),								
	Substitute f_2 in equation (ii), $f_1 + f_2 = 20$								
	$f_1 + f_2 = 20$								
	$f_1 = 20 - 12$								
	$f_1 = 8$								
	Ans.: $f_1 = \underline{8}; f_2 = \underline{12}$								