GREENLAWNS SCHOOL, WORLI Terminal Examination 2017 MATHEMATICS

Marks: 80 Time: 2½hrs

Section A

(Attempt all questions of this section)

Question 1

- a. Monica has a C.D. Account in Union Bank of India & deposited ` 600 per month. If the maturity value of this account is ` 24930 & the rate of interest is 10% p.a. Find the time (in yrs.) for which the account was held.
- **b.** Identical cards are marked 1 to 75. When a card is drawn at random, what is the probability that it is;
 - (i) a multiple of 11.
 - (ii) a perfect square.
 - (iii) a factor of 75.
- c. If (x 3) is a factor of $2x^3 + 3x^2 + px + 15$
 - (i) Find the value of p
 - (ii) Hence Factorise the expression completely.

Question 2

a. Represent the solution set of the following inequation on the number line.

$$x + \frac{1}{5} < 1\frac{1}{3}x + \frac{8}{15} \le \frac{x}{5} + 1\frac{2}{3}, \quad x \in \mathbb{R}$$
[3]

b. Mean of the following set of distribution is 18, Calculate the numerical value of x.

[3]

[3]

[4]

Marks	5	10	15	20	25	30
No. of Students	6	4	6	12	x	4

c. The point P is the foot of perpendicular from A(-5, 7) to the line whose equation is 2x - 3y + 18 = 0.

Determine: (i) The equation of the line AP. (ii) The co-ordinates of P. [4]

Question 3.

a. If $\begin{bmatrix} 3 & -24 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x \\ 2 \end{bmatrix} + 3 \begin{bmatrix} -4 \\ 5 \end{bmatrix} = 2 \begin{bmatrix} -3 \\ 9y \end{bmatrix}$, find x and y. [3]

b. Prove that:
$$\frac{\cot A + \tan B}{\cot B + \tan A} = \cot A \tan B.$$
 [3]

c. In the figure, PQRS is a ||^{gm} with PQ = 16cm, QR = 10cm. L is a point on PR such that RL : LP = 2 : 3 QL produced meets RS at M & PS produced at N. Find the lengths of PN & RM. [4]

Question 4

a.	Solve the quadratic equation and give your answer correct to two significant figures: $3x - 1 = \frac{7}{x}$	[3]
b.	Prove: $\sin^6\theta + \cos^6\theta = 1 - 3\sin^2\theta$. $\cos^2\theta$	[3]
с.	 Use graph paper for this question. A point P is reflected to P' in the Y-axis. The co-ordinates of its image are (-2, 3). (i) Find the co-ordinate of P. (ii) Find P", the reflection of P under X-axis. (iii) Find the co-ordinates of Q' of Q(0, 2) after reflecting under PP". (iv) Write the special name of PP'QQ'. Also, find the area of the figure obtained. 	[4]
	Section B (40 marks)	
Ques	stion 5	
a.	Using properties of proportion, Solve for 'x' $\frac{x^2 + 3x - 4}{3x - 4} = \frac{3x^2 + 2x + 9}{2x + 9}$	[3]
b.	Find the value of 'K' if $(x - 2)$ is a factor of $x^3 + 2x^2 - kx + 10$. Hence determine whether $(x = a + b)$ is also a factor.	+ 5) [3]
C.	The line joining P (–4, 5) & Q(3, 2) intersects y-axis at point R. PM & QN are perpendicula P & Q on x-axis. Find: i) Ratio PR: RQ ii) Co-ordinates of R iii) Area of □ PMNQ	r from [4]

Question 6

a. If
$$\frac{x}{a} = \frac{y}{b} = \frac{z}{c}$$
; prove that $\frac{x^3}{a^2} + \frac{y^3}{b^2} + \frac{z^3}{c^2} = \frac{(x+y+z)^3}{(a+b+c)^2}$ [3]

b. If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then find 'k' if $A^2 = 8A + kI$ [3]

c. In what ratio is the line joining the points (4, 2) and (3, -5) divided by the [4] x axis? Find the co-ordinates of the point of intersection.

Question 7

- a. In \triangle ABC, M and N are points on AB and AC such that AM = 2cm, MB = 4 cm, AN = 3 cm and NC = 1 cm. Prove that: \triangle AMN $\sim \triangle$ ACB Also, find $\frac{\text{Area of } \triangle$ AMN}{\text{Area of } \triangleACB
- **b.** Ravina deposits `600 per month in a recurring deposit scheme for 2 years. If she receives `15,450 at the time of maturity, calculate the rate of interest per annum.
- c. Estimate the mode by drawing the histogram.

Class Interval	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
Frequency	10	6	8	12	5	9

Question 8

- **a.** If (3x + 4) : (x + 5) is the duplicate ratio of 8 : 5, find the value of x. [3]
- **b.** Find the values of x, which satisfy the inequation:

$$-2 \le \frac{1}{2} - \frac{2x}{3} \le 1\frac{5}{6}, x \in \mathbb{N}.$$

Graph the solution on number line.

- c. A hermisphere is surmounted by a right circular cone of same base radius. [4]
 If the common radius is 7 cm and slant height is 25 cm.
 Find :
 - (i) the height of the cone,
 - (ii) the volume of the solid,
 - (iii) the total surface area of the solid.

Question 9

- A shopkeeper buys an article whose marked price is ` 40,000 from a Manufacturer at a discount of 10%. The rate of sales tax(under VAT) on the article is 5%. If he sells the article to a consumer at a discount of 5%, find:
 - (i) the VAT paid by the shopkeeper
 - (ii) the amount paid by the consumer.
- b. Draw a circle of radius 4 cm. Construct two tangents to this circle so that the angle between the tangents is 45°.
 [3]
- **c.** Sum of two natural numbers is 8 and the difference of their reciprocal is $\frac{2}{15}$. Find the number.

[3]

[3]

[3]

[4]

[3]

Question 10

- **a.** Show that the points (3, 3), (9, 0), (12, 21) are the vertices of a right angled triangle. [3]
- b. The Top of an unfinished dam subtends an angle of elevation at a point 100 m from its base of 30°. How much higher should the dam be raised so that the angle of elevation becomes 45°.
 [3]
- c. Jayant sold some `100 shares at ` 90 and invested in 15%` 50 shares at ` 33. If he sold this shares at`110 instead of ` 90, he would have earned ` 450 more. Find the number of shares sold by him.

Question 11

- **a.** Given: $\cos\theta + \sin\theta = \sqrt{2} \cos\theta$. Show that: $\cos\theta - \sin\theta = \sqrt{2} \sin\theta$.
- **b.** The results of an examination are tabulated below:

Marks(less than)	10	20	30	40	50	60	70	80	90	100
No. of Candidates	8	20	40	75	125	160	188	192	197	200

Taking 2 cm. = 10 marks on one axis and 2 cm. = 20 students on the other, draw an ogive for the above data and from it determine:

(i) The median marks.

(ii) The lower quartile.

- (iii) The inter quartile.
- (iv) The number of candidates who failed if pass mark is 35.
- (v) The number of candidates who obtained grade A, if the lowest mark for grade A is 75.

[4]

[6]

ANSWER KEY SECTION A

Question 1

a.

Monthly Installment = `600,Let No. of months be 'n'. Solution: Equivalent Principal for 1 month $(\mathsf{P}) = \mathsf{MI} \times \frac{\mathsf{n}(\mathsf{n}+1)}{2}$ $= 600 \times \frac{n(n+1)}{2}$ $\therefore P = 300n(n+1)$ Rate (R) = 10% p.a. Time (T) = $\frac{1}{12}$ yr. $I = \frac{P \times R \times T}{100}$ $= \frac{300 n(n+1) \times 10 \times 1}{2}$ 100×12 $I = \frac{5n(n+1)}{2}$ Actual deposit = MI × n = 600nMaturity Value = $\begin{pmatrix} Actual \\ deposit \end{pmatrix} + Interest$ $24930 = 600n + \frac{5n(n+1)}{2}$ $24930 = \frac{1200 \, n + 5 n^2 + 5 n}{2}$ $\therefore 5n^2 + 1205n = 49860$ $\therefore 5n^2 + 1205n - 49860 = 0$ Divide each term by 5, we get, $n^2 + 241n - 9972 = 0$ $n^2 + 277n - 36n - 9972 = 0$ n(n + 277) - 36(n + 277) = 0(n + 277)(n - 36) = 0... (Factorizing left side) or n - 36 = 0... (Zero product rule) n+ 277 – 0 =0 n = -277 or n = 36 'n' cannot be negative ∴ n = 36 months \therefore Time = $\frac{36}{12}$ = 3 yrs.

Total Number of outcomes = 73b. Favorable outcomes = $\{11, 22, 33, 44, 55, 66\}$ (i)

No. of favourable outcomes = 6

Probability = $\frac{\text{No.of favourable outcomes}}{\text{Total number of outcomes}} = \frac{6}{75} = \frac{2}{25}$

(ii) Favorable outcomes = $\{1, 2, 3, 4, 5, 6, 7, 8\}$

No. of favourable outcomes = 8

Probability
$$=\frac{\text{No.of favourable outcomes}}{\text{Total number of outcomes}} = \frac{8}{75}$$

(iii) Favorable outcomes = $\{1, 3, 5, 15, 25, 75\}$ No. of favourable outcomes = 6

Probability =
$$\frac{6}{75} = \frac{2}{25}$$

c. $f(x) = 2x^3 + 3x^2 + px + 15$ Given x - 3 = 0 = x = 3By factor theorem f(3) = 0 $2x3^3 + 3x3^2 + 3p + 15 = 0$ 54 + 27 + 3p + 15 = 0 = 3p = 96 $P = \frac{-96}{3} = p = -32$ $\therefore f(x) = 2x^3 + 3x^2 - 32x + 15$

$$2x^{2} + 9x - 5$$

$$x - 3) 2x^{3} + 3x^{2} - 32x + 15$$

$$2x^{3} - 6x^{2}$$

$$- +$$

$$9x^{2} - 32x$$

$$9x^{2} - 27x$$

$$-+$$

$$-5x + 15$$

$$-5x + 15$$

$$+ -$$

$$+ -$$

$$-5x + 15$$

$$+ -$$

$$-5x + 15$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+ -$$

$$+$$

a.
$$x + \frac{1}{5} < 1\frac{1}{3}x + \frac{8}{15} \le \frac{x}{5} + 1\frac{2}{3}, x \in \mathbb{R}$$

$$\frac{5x+1}{5} < \frac{4x}{3} + \frac{8}{15} \le \frac{x}{5} + \frac{5}{5}$$

$$\frac{5x+1}{5} < \frac{20x+8}{15} \le \frac{3x+25x}{15}$$

$$\frac{5x+1}{5} < \frac{20x+8}{15} \text{ and } \frac{20x+8}{15} \le \frac{3x+25x}{15}$$

$$15x + 3 < 20x + 8 \text{ and } 17x \le 17$$

$$-5 < 5x \text{ and } x \le 1$$

$$-1 < x$$
Solution set $\{x : -1 < x \le 1 \ x \in \mathbb{R}\}$

$$< -3 -2 -1 0 1 2 3 4$$

b. Mean = 18

X	f	fx
5	6	30
10	4	40
15	6	90
20	12	240
25	Х	25x
30	4	120
	32 + x	520 + 25x

$$Mean = \frac{efx}{ef}$$

$$18 = \frac{520 + 25x}{32 + x} = 576 + 18x = 52 + 25x$$
$$56 = 7x$$
$$x = 8$$

c.
$$2x - 3y + 18 = 0$$
 (i)

$$3y = 2x + 18$$

$$y = -\frac{2}{3}x + 6$$

Slope of AP = $-\frac{-3}{2}$
Equation of AP

$$y - y_{1} = m(x - x_{1})$$

$$y - 7 = \frac{-3}{2} [x - (-5)]$$

$$2y - 14 = -3x - 15$$

$$3x + 2y + 1 = 0$$

$$3x + 2y = -1$$

$$3x + 2y = -1$$

$$3x + 2y = -1$$

$$3x + 2y = -3$$

Substituting value of x in eg. (i)

$$\begin{array}{rl} 3(-3) + 2y &= -1 \\ -9 &+ 2y &= -1 \\ & 2y &= 8 \\ & y &= 4 \end{array}$$
 p(-3, 4)

Q.3.

a.
$$\begin{bmatrix} 3 & -2\\ -1 & 4 \end{bmatrix} \begin{pmatrix} 4x\\ 2 & + \end{bmatrix} 3 \begin{bmatrix} -4\\ 5 & -2 & 9y \\ 9y \end{bmatrix} \begin{bmatrix} 3(4x) & -2(2)\\ -1(4x) & +4(2) \end{bmatrix} + \begin{bmatrix} -12\\ 15 \end{bmatrix} = \begin{bmatrix} -6\\ 18y \end{bmatrix} \begin{bmatrix} 12x & -4\\ -4x & +8 \end{bmatrix} + \begin{bmatrix} -12\\ 15 \end{bmatrix} = \begin{bmatrix} -6\\ 18y \end{bmatrix} \begin{bmatrix} 12x & -4 + (-12)\\ -4x & +8 + 15 \end{bmatrix} = \begin{bmatrix} -6\\ 18y \end{bmatrix} \begin{bmatrix} 12x & -4 + (-12)\\ -4x & +8 + 15 \end{bmatrix} = \begin{bmatrix} -6\\ 18y \end{bmatrix} \begin{bmatrix} 12x & -4 + (-12)\\ -4x & +8 + 15 \end{bmatrix} = \begin{bmatrix} -6\\ 18y \end{bmatrix}$$

Equating the matrices 12x - 16 = -612x = 10 $x = \frac{10}{12}$

$$X = \frac{1}{12}$$

$$x = \frac{5}{6}$$

-4x + 23 = 18y

$$-4\left[\frac{5}{6}\right] + 23 = 18y$$

$$\frac{-10}{3} + 23 = 18y$$

$$-10 + 69 = 54y$$

$$\frac{59}{54} = y$$

$$\frac{5}{54} = y$$

b. Solution:

L.H.S. =
$$\frac{\cot A + \tan B}{\cot B + \tan A}$$

= $\frac{\cot A + \tan B}{\frac{1}{\tan B} + \frac{1}{\cot A}}$... $\tan \theta = \frac{1}{\cot \theta}$, $\cot \theta = \frac{1}{\tan \theta}$
= $(\cot A + \tan B) \div \left(\frac{\cot A + \tan B}{\cot A \cdot \tan B}\right)$
= $(\cot A + \tan B) \times \frac{\cot A \cdot \tan B}{(\cot A + \tan B)}$
= $\cot A \cdot \tan B \times \frac{\cot A \cdot \tan B}{(\cot A + \tan B)}$
= $\cot A \cdot \tan B$
... hence proved.

1

c. Solution:

□PQRS is a parallelogram

PQ = 16 cm

QR = 10 cm

RL : LP = 2 : 3

To find: PN, RM

Proof:

	Statement	Reason
1)	In Δ RQL & Δ PNL,	
	∠RQL = ∠PNL	Alternate angles are equal
	\angle RLQ = \angle PLN	V.O.As
2)	$\Delta RQL \sim \Delta PNL$	By AA axiom of similarity
3)	RQ RL	c.s.s.t.p.
	$\overline{PN} = \overline{PL}$	
4)	10 2	Substitution
	$\overline{\text{PN}} = \overline{3}$	

	$\therefore PN = \frac{10 \times 3}{2}$	Simplification
	PN = 15 cm	
5)	In ΔRLM &ΔPLQ,	
	∠RLM = ∠PLQ	(V.O.As)
	∠LRM = ∠LPQ	alternate angles are equal
6)	Δ RLM ~ Δ PLQ	By AA axiom of similarity
7)	RL RM	c.s.s.t.p.
	$\overline{PL} = \overline{PQ}$	
8)	2 _ RM	Substitution
	$\frac{1}{3} - \frac{1}{16}$	
9)	PM - 16×2	Simplification
	3	
	RM = $\frac{32}{3} = 10\frac{2}{3}$ cm	

 m^2

Q.4.

a.

Q.4.
a.
$$3x - 1 = \frac{7}{x}$$

 $3x^2 - x = 7$
 $3x^2 - x = 0$
 $a = 3$ $b = -1$ $c = -7$
 $x = -b + \frac{b^2 - 4ac}{2a}$
 $= -(-1) \pm \frac{(-1)^2 - 4x \, 3x \, (-7)}{2 \, x \, 3}$
 $= +1 \pm \frac{1 + 85}{6} = \frac{1 \pm 9.22}{6}$
 $x = \frac{1 + 9.22}{6}$ or $x = \frac{1 - 9.22}{6}$
 $= \frac{10.22}{6}$ or $x = \frac{1 - 9.22}{6}$
 $= 1.703$ or $x = \frac{-8.22}{6} =$
 $= 1.7$ or $x = -1.37 = x = -1.4$
b. Prove: $\sin^6\theta + \cos^6\theta = 1 - 3\sin^2\theta . \cos^2\theta$
LHS = $\sin60 + \cos60$
 $= (\sin^2\theta)^3 + (\cos^2\theta)^3$
 $= (\sin^2\theta + \cos^2\theta = 1)$
 $= \sin^4\theta + \sin^2\theta \cos^2\theta + \cos^4\theta$
 $= \sin^4\theta + \cos^2\theta - \sin^2\theta \cos^2\theta$
 $= (\sin^2\theta)^2 + (\cos^2)^2 - \sin^2\theta \cos^2\theta$
 $= a^2 + b^2 = (a + b)^2 - 2ab$

= $(\sin^2\theta + (\cos^2\theta) - 2\sin^2\theta\cos^2\theta - \sin^2\theta\cos^2\theta)$ = $1 - 3\sin^2\theta\cos^2\theta$ = RHS Hence Proved.

c. (i) p(2, 3)

Q.5.

- (ii) p"(2, -3)
- (iii) 9'(4, 2)
- (iv) Parallelogram Area $x = \frac{1}{2}x \ 6 \ x \ 4 +$ (graph paper)

Section B (40 marks)

0	$\frac{x^2 + 3x - 4}{2} = \frac{3x^2 + 2x + 9}{2}$
a.	$\frac{3x-4}{3x-4} = \frac{2x+9}{2x+9}$
	Componendo&Dividendo
	$x^2 + 3x - 4 + 3x - 4$ $3x^2 + 2x + 9 + 2x + 9$
	$\frac{1}{x^2 + 3x - 4 - 3x + 4} = \frac{1}{3x^2 + 2x + 9 - 2x - 9}$
	$x^2 + 6x - 8 - 3x^2 + 4x + 18$
	$x^2 - 3x^2$
	2 2
	$\frac{3x^2}{2} = \frac{3x^2 + 4x + 18}{2}$
	x^2 x^{2+6x-8}
	$3x^2 + 18x - 24 - 3x^2 + 4x + 18$
	3x + 10x + 24 = -3x + 4x + 10 14x = -42
	42
	$X = \frac{14}{14}$
	x = 3
b.	•
Solut	f(x) = $x^3 + 2x^2 - kx + 10$
	By remainder theorem.
	when $f(x)$ is divided by $(x - 2)$, the remainder is $f(2)$.
	$f(2) = (2)^3 + 2(2)^2 - k(2) + 10$
	= 8 + 8 - 2k + 10
	f(2) = 26 - 2k (i)
	(x - 2) is a factor of $f(x)$ given
	\therefore from (1) & (11) 26 2k = 0
	20 - 2K = 0 2K = 26
	k = 13
	$f(x) = x^3 + 2x^2 - 13x + 10$
	By remainder theorem, when $f(x)$ is divided by $(x + 5)$, the remainder is $f(-5)$.
	$\therefore f(-5) = (-5)^3 + 2(-5)^2 - 13(-5) + 10$
	= -125 + 50 + 65 + 10
	= -125 + 125

f(-5) = 0By factor theorem : f(-5) = 0(x + 5) is a factor of f(x).

c. Solution:

R(0, y) is point on y-axis $P(-4, 5) \equiv (x_1, y_2) \& Q(3, 2) \equiv (x_2, y_2)$ By section formula,

$$R(0, y) = \left\{ \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \right\}$$

$$R(0, y) = \left\{ \frac{m_1(3) + m_2(-4)}{m_1 + m_2}, \frac{m_1(2) + m_2(5)}{m_1 + m_2} \right\}$$

$$R(0, y) = \left\{ \frac{3m_1 - 4m_2}{m_1 + m_2}, \frac{2m_1 + 5m_2}{m_1 + m_2} \right\}$$

Equating x & y co-ordinates, we get,

i)
$$PR : RQ = m_1 : m_2 = 4 : 3$$

ii) Co-ordinates of R(0, y) =
$$\left(0, \frac{23}{7}\right)$$

iii)

 $= \frac{49}{2}$ Area \Box PMNQ = <u>24.5 sq. units</u>

a. Let
$$\frac{x}{a} = \frac{y}{b} = \frac{z}{c} = k$$

 $k = aky=bk$ $z=ck$
To prove $= \frac{x^3}{a^2} + \frac{y^3}{b^2} + \frac{z^3}{c^2} = \frac{(x+y+z)^3}{(a+b+c)^2}$
 $LHS = \frac{a^3b^3c^3}{a^2b^2c^2}$
 $= k^3(a + b + c)$
 $RHS = \frac{(ak+bk+ck)^3}{(a+b+c)^2}$
 $= \frac{((k^3(a+b+c))^3}{(a+b+c)^2}$
 $= \frac{k^3(a+b+c)}{(a+b+c)^2}$
 $= k^3(a + b + c)$
 $= LHS$ Hence proved
b. $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix} I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $A^2 = 8A + kI$
According to the given condition:
 $A^2 = 18A + KI$
 $A^2 - 8A = KI$

$$\begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 8 \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix} = k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ -8 & 49 \end{bmatrix} - \begin{bmatrix} 8 & 0 \\ 8 & 56 \end{bmatrix} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$
$$\begin{bmatrix} 1-8 & 0 \\ -8+8 & 49-56 \end{bmatrix} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$
$$\begin{bmatrix} -7 & 0 \\ 0 & -7 \end{bmatrix} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$

By equality of matrices corresponding values are equal $\therefore k = -7$

c. Let A = (4, 2)

Let B = (3, -5)Let k on x-ax By section formulas (x, 0) =

Q.7. In $\triangle AMN$ and $\triangle ACB$ a. $\angle A = \angle A$ (common angle) $\frac{AM}{AC} = \frac{AN}{AB} = \frac{1}{2}$ $\therefore \Delta AMN \sim \Delta ACB$ $\frac{\text{Area of } \Delta \text{AMN}}{\text{Area of } \Delta \text{ACB}} = \frac{\frac{2}{\text{AM}}}{\frac{2}{\text{AC}}}$ $= \frac{2}{4}$ $= \frac{2}{2}$ $\frac{\text{Area of } \Delta \text{AMN}}{\text{Area of } \Delta \text{ACB}} = \frac{1}{4}$ P = `600 b. N = 24 months MV = `15,450 R = ? $MV = p x n + p x \frac{n(n+1)}{100} x \frac{1}{12 x 2}$ $15450 = 600 \text{ x } 24 + \frac{600 \text{ x } 24 \text{ x } 25 \text{ x } \text{ r}}{100 \text{ x } 12 \text{ x } 2}$ $15450 = 14400 + 25 \times 6$ 15450 = 150rr = 7% (graph paper) c.

Q.8.

 $\frac{3x+4}{x+5} = \frac{\binom{2}{8}}{5}$ a. $\frac{3x+4}{x+5} = \frac{64}{25}$ 75x + 100 = 64x + 32011x = 220x = 20b. Solution: $-2 \leq \frac{1}{2} \times 6 - \frac{2x}{3} \times 6 \qquad \underbrace{1}_{2} \times 6 - \frac{2x}{3} \times 6 \leq \frac{11 \times 6}{6}$ $-12 \leq 3 - 4x$ $3-4x \leq 11$ $\therefore 4x \leq 3+12$ $3-11 \leq 4x$ $\therefore 4x \leq 15$ $\therefore -8 \leq 4x$ $\therefore \mathbf{x} \leq \frac{15}{4}$ i.e. $4x \ge -8$ $x \ge -\frac{8}{4}$ $\therefore x \leq 3.75$ $\therefore x \ge -2$ \therefore -2 $\leq x \leq$ 3.75, $x \in N$ \therefore S.S. = {1, 2, 3} The graph of the solution is: 1 2 0 3 4 5 6 -1 $l^2 = h^2 + v^2$ (i) c. $(25)^2 = h^2 + (7)^2$ $625 = h^2 + 49$ $h^2 = 576$ h = 24 cmVolume of the solid = v of conc+ v of hemisphere (ii) $=\frac{1}{3}\pi r^{2}h+\frac{2}{3}\pi r^{3}$ $=\frac{1}{3}\pi r^{2}(h+2r)$ $= \frac{1}{3} \times \frac{22}{7} \times 7 \times 7 (24 + 2(7))$ $=\frac{1}{3} \times 22 \times 7 \times 38$ $=\frac{5852}{3}$ $= 1950.666 \text{ cm}^2$ $= 1950.67 \text{ cm}^2$ SA of solid = CSA of conc + CSA of hemisphere (iii)

 $=\pi r (l+2r)$

$$= \frac{22}{7} \times 7 (25 + 2 \times 7)$$
$$= 22 \times 39 = 858 \text{ cm}^2$$

Q.9.

a. MP = `40,000 /-For shopkeeper Purchased price = $40,000 - \frac{1}{100} \times 40,000$ = 40,000 - 4000= 36,000Tax paid = $\frac{5}{100} \times 36000$ = `1800 Selling price = $40,000 - \frac{5}{100} \times 40,000$ = 40,000 - 2000= 38,000

Tax changed =
$$\frac{5}{100} \times 38,000$$

= 1900

VAT = Tax changed – Tax paid = 1900 – 1800 = `100

Amt paid by customer = 38000 + 1900= 39,900/-

Q.9.

b. Construction

Q.9.

c. let two natural numbers be x and 8-x

$$\frac{1}{x} - \frac{1}{8 - x} = \frac{2}{15}$$
$$\frac{9 - x - x}{x(8 - x)} = \frac{2}{15}$$
$$\frac{8 - 2x}{8x - x^2} = \frac{2}{15}$$
$$\frac{120 - 30x = 16x - 2x^2}{2x^2 - 16x - 30x + 120} = 0$$
$$2x^2 - 46 + 120 = 0$$
$$2x^2 - 23x + 60 = 0$$

 $x^{2} - 20x + 3x + 60 = 0$ x(x-20) - 3(x-20) = 0 (x-20) (x-3) = 0 x-20 = 0 or x-3 = 0 x = 0 or x = 3But x = 20 is not possible $\therefore x = 3$ $\therefore 8 - x = 8 - 3 = 5$ Thus the two numbers are 3 and 5.

Q.10.

a. Distance Formula for (3, 3) an d(9, 0)

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
$$= \sqrt{(3 - 9)^2 + (3 - 0)^2}$$
$$= \sqrt{36 + 9}$$
$$= \sqrt{45}$$

Distance Formula for (3, 3) and (12, 21) = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = $\sqrt{(3 - 12)^2 + (3 - 21)^2}$ = $\sqrt{81 + 324}$ = $\sqrt{405}$ Distance Formula for (3, 3) and (12, 21) = $\sqrt{(12 - 9)^2 + (21 - 0)^2}$ = $\sqrt{9 + 441}$ = $\sqrt{450}$ $\therefore (\sqrt{405})^2 + (\sqrt{45})^2 = (\sqrt{450})^2$ 405 + 45 = 450450 = 450

[:] By phythogoras Theorem (9, 0), (3, 3) and (12, 21) are the vertices of a right angled triangle.

b.

let the number of shares be x c. Case I: \therefore Investment = 90 $\times x$ = 90 x $\therefore \text{ No of shares} = \frac{Investment}{market value} = \frac{90x}{33} = \frac{30x}{11}$ = No. of shares \times Rate x NV : Income $=\frac{30x}{11} \times \frac{15}{11} \times 50$ $=\frac{225x}{11}$ Case II Investment =110 $\times x$ = `110 *x* \therefore No of shares $=\frac{110x}{33}=\frac{10x}{3}$ = No. of shares \times NV \times Rate ∴ Income $=\frac{10x}{\frac{3}{100}} \times 50 \times \frac{15}{100}$ $=\frac{75x}{3}$ = 25 xAccording to condition $\frac{25x - \frac{225x}{11}}{\frac{275x - 225x}{11}} = 450$ $50x = 450 \times 11$ $x = \frac{450 \times 11}{50}$ x = 99 shares Q.11. $\cos\theta + \sin\theta = \sqrt{2}\cos\theta$ a. $\sin\theta = \sqrt{2}\cos\theta - \cos\theta$ $=\cos\theta(\sqrt{2}-1)$ $\frac{\sin\theta}{\cos\theta} = \sqrt{2} - 1$ $\frac{\cos\theta}{\sin\theta} = \frac{1}{\sqrt{2}-1}$ $\frac{\cos\theta}{\sin\theta} = \frac{\sqrt{2}+1}{(\sqrt{2})^2 - 1}$

$$= \sqrt{2} + 1$$

$$\cos \theta = \sqrt{2} \sin \theta + \sin \theta$$

$$\cos \theta - \sin \theta = \sqrt{2} \sin \theta$$

b. Graph