Section A

(Attempt all questions of this section)

Question 1

a. Monica has a C.D. Account in Union Bank of India \& deposited `600 per month. If the maturity value of this account is` 24930 \& the rate of interest is 10% p.a. Find the time (in yrs.) for which the account was held.
b. Identical cards are marked 1 to 75 . When a card is drawn at random, what is the probability that it is;
(i) a multiple of 11 .
(ii) a perfect square.
(iii) a factor of 75 .
c. If $(x-3)$ is a factor of $2 x^{3}+3 x^{2}+p x+15$
(i) Find the value of p
(ii) Hence Factorise the expression completely.

Question 2

a. Represent the solution set of the following inequation on the number line.
$x+\frac{1}{5}<1 \frac{1}{3} x+\frac{8}{15} \leq \frac{x}{5}+1 \frac{2}{3}, \quad x \in \mathrm{R}$
b. Mean of the following set of distribution is 18,

Calculate the numerical value of x.

Marks	5	10	15	20	25	30
No. of Students	6	4	6	12	x	4

c. The point P is the foot of perpendicular from $A(-5,7)$ to the line whose equation is $2 x-3 y+18=0$.
Determine: (i) The equation of the line AP.
(ii) The co-ordinates of P.

Question 3.

a. If $\left[\begin{array}{cc}3 & -24 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}x \\ 2\end{array}\right]+3 \quad\left[\begin{array}{c}-4 \\ 5\end{array}\right]=2\left[\begin{array}{c}-3 \\ 9 y\end{array}\right]$, find x and y.
b. Prove that: $\frac{\boldsymbol{\operatorname { c o t } A + \boldsymbol { \operatorname { t a n } } B}}{\boldsymbol{\operatorname { c o t }} \mathbf{B}+\boldsymbol{\operatorname { t a n }} \mathbf{A}}=\cot A \tan B$.
c. In the figure, $P Q R S$ is a $\|^{g m}$ with $P Q=16 \mathrm{~cm}, Q R=10 \mathrm{~cm}$. L is a point on $P R$ such that $R L: L P=$ $2: 3$ QL produced meets $R S$ at $M \& P S$ produced at N. Find the lengths of $P N \& R M$.

Question 4

a. Solve the quadratic equation and give your answer correct to two significant figures:
$3 x-1=\frac{7}{x}$
b. Prove: $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cdot \cos ^{2} \theta$
c. Use graph paper for this question. A point P is reflected to P^{\prime} in the Y-axis.

The co-ordinates of its image are ($-2,3$).
(i) Find the co-ordinate of P.
(ii) Find P ", the reflection of P under X -axis.
(iii) Find the co-ordinates of Q^{\prime} of $Q(0,2)$ after reflecting under PP".
(iv) Write the special name of $P P^{\prime} Q Q$ '.

Also, find the area of the figure obtained.
Section B (40 marks)
(Attempt any Four question from this Section)

Question 5

a. Using properties of proportion, Solve for ' x '
$\frac{x^{2}+3 x-4}{3 x-4}=\frac{3 x^{2}+2 x+9}{2 x+9}$
b. Find the value of ' K ' if $(x-2)$ is a factor of $x^{3}+2 x^{2}-k x+10$. Hence determine whether $(x+5)$ is also a factor.
c. The line joining $P(-4,5) \& Q(3,2)$ intersects y-axis at point R. $P M \& Q N$ are perpendicular from $P \& Q$ on x-axis. Find:
i) Ratio PR: RQ
ii) Co-ordinates of R
iii) Area of \square PMNQ

Question 6

a. If $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$; prove that $\frac{x^{3}}{a^{2}}+\frac{y^{3}}{b^{2}}+\frac{z^{3}}{c^{2}}=\frac{(x+y+z)^{3}}{(a+b+c)^{2}}$
b. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then find ' k ' if $A^{2}=8 A+k I$
c. In what ratio is the line joining the points $(4,2)$ and $(3,-5)$ divided by the x axis? Find the co-ordinates of the point of intersection.

Question 7

a. In $\triangle A B C, M$ and N are points on
$A B$ and $A C$ such that $A M=2 \mathrm{~cm}$, $\mathrm{MB}=4 \mathrm{~cm}, \mathrm{AN}=3 \mathrm{~cm}$ and $N C=1 \mathrm{~cm}$.
Prove that: $\triangle \mathrm{AMN} \quad \sim \triangle \mathrm{ACB}$
Also, find $\frac{\text { Area of } \triangle A M N}{\text { Area of } \triangle A C B}$

b. Ravina deposits `600 per month in a recurring deposit scheme for 2 years. If she receives` 15,450 at the time of maturity, calculate the rate of interest per annum.
c. Estimate the mode by drawing the histogram.

Class Interval	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	10	6	8	12	5	9

Question 8

a. If $(3 x+4):(x+5)$ is the duplicate ratio of $8: 5$, find the value of x.
b. Find the values of x, which satisfy the inequation:
$-2 \leq \frac{1}{2}-\frac{2 x}{3} \leq 1 \frac{5}{6}, x \in N$.
Graph the solution on number line.
c. A hermisphere is surmounted by a right circular cone of same base radius.

If the common radius is 7 cm and slant height is 25 cm .
Find:
(i) the height of the cone,
(ii) the volume of the solid,
(iii) the total surface area of the solid.

Question 9

a. A shopkeeper buys an article whose marked price is ` 40,000 from a Manufacturer at a discount of 10%. The rate of sales tax(under VAT) on the article is 5%. If he sells the article to a consumer at a discount of 5%, find:
(i) the VAT paid by the shopkeeper
(ii) the amount paid by the consumer.
b. Draw a circle of radius 4 cm . Construct two tangents to this circle so that the angle between the tangents is 45°.
c. Sum of two natural numbers is 8 and the difference of their reciprocal is $\frac{2}{15}$. Find the number.

Question 10

a. Show that the points $(3,3),(9,0),(12,21)$ are the vertices of a right angled triangle.
b. The Top of an unfinished dam subtends an angle of elevation at a point 100 m from its base of 30°. How much higher should the dam be raised so that the angle of elevation becomes 45°.
c. Jayant sold some `100 shares at` 90 and invested in 15% `50 shares at` 33 . If he sold this shares at 110 instead of `90 , he would have earned` 450 more. Find the number of shares sold by him.

Question 11

a. Given: $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$.

Show that: $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$.
b. The results of an examination are tabulated below:

Marks(less than)	10	20	30	40	50	60	70	80	90	100
No. of Candidates	8	20	40	75	125	160	188	192	197	200

Taking $2 \mathrm{~cm} .=10$ marks on one axis and $2 \mathrm{~cm} .=20$ students on the other, draw an ogive for the above data and from it determine:
(i) The median marks.
(ii) The lower quartile.
(iii) The inter quartile.
(iv) The number of candidates who failed if pass mark is 35 .
(v) The number of candidates who obtained grade A, if the lowest mark for grade A is 75 .

ANSWER KEY
 \section*{SECTION A}

Question 1
a.

Solution: \quad Monthly Installment = ` 600 ,Let No. of months be ' n '.
Equivalent Principal for 1 month

$$
\begin{aligned}
(\mathrm{P}) & =\mathrm{MI} \times \frac{\mathrm{n}(\mathrm{n}+1)}{2} \\
& =600 \times \frac{\mathrm{n}(\mathrm{n}+1)}{2}
\end{aligned}
$$

$\therefore P=300 n(n+1)$
Rate $(R)=10 \%$ p.a.
Time $(T)=\frac{1}{12} \mathrm{yr}$.

$$
\begin{aligned}
I & =\frac{P \times R \times T}{100} \\
& =\frac{300 n(n+1) \times 10 \times 1}{100 \times 12} \\
I & =\frac{5 n(n+1)}{2}
\end{aligned}
$$

Actual deposit $=\mathrm{MI} \times \mathrm{n}$

$$
=` 600 n
$$

Maturity Value $=\binom{$ Actual }{ deposit }$+$ Interest

$$
\begin{aligned}
& 24930=600 n+\frac{5 n(n+1)}{2} \\
& 24930=\frac{1200 n+5 n^{2}+5 n}{2}
\end{aligned}
$$

$$
\therefore 5 n^{2}+1205 n=49860
$$

$$
\therefore 5 n^{2}+1205 n-49860=0
$$

Divide each term by 5 , we get,

$$
\begin{aligned}
n^{2}+241 n-9972 & =0 \\
n^{2}+277 n-36 n-9972 & =0 \\
n(n+277)-36(n+277) & =0 \\
(n+277)(n-36) & =0 \quad \ldots \text { (Factorizing left side) }
\end{aligned}
$$

$n+277-0=0$ or $n-36=0 \ldots$ (Zero product rule)
$\mathrm{n}=-277$ or $\mathrm{n}=36$
' n ' cannot be negative
$\therefore \mathrm{n}=36$ months
\therefore Time $=\frac{36}{12}=3 \mathrm{yrs}$.
b. Total Number of outcomes $=73$
(i) Favorable outcomes $=\{11,22,33,44,55,66\}$

No. of favourable outcomes $=6$

$$
\text { Probability }=\frac{\text { No.of favourable outcomes }}{\text { Total number of outcomes }}=\frac{6}{75}=\frac{2}{25}
$$

(ii) Favorable outcomes $=\{1,2,3,4,5,6,7,8\}$

No. of favourable outcomes $=8$

$$
\text { Probability }=\frac{\text { No.of favourable outcomes }}{\text { Total number of outcomes }}=\frac{8}{75}
$$

(iii) Favorable outcomes $=\{1,3,5,15,25,75\}$

No. of favourable outcomes $=6$

$$
\text { Probability }=\frac{6}{75}=\frac{2}{25}
$$

c. $f(x)=2 x^{3}+3 x^{2}+p x+15$

Given $x-3=0=x=3$
By factor theorem $f(3)=0$
$2 \times 3^{3}+3 \times 3^{2}+3 p+15=0$
$54+27+3 p+15=0=3 p=96$

$$
P=\frac{-96}{3}=p=-32
$$

$\therefore f(\mathrm{x})=2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-32 \mathrm{x}+15$
$2 x^{2}+9 x-5$
$\mathrm{x}-3) 2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-32 \mathrm{x}+15$
$2 x^{3}-6 x^{2}$
$+\quad+$
$9 x^{2}-32 x$
$9 x^{2}-27 x$
$+$
$-5 x+15$
$-5 x+15$

+ -

0

$$
\begin{aligned}
\therefore f(x) & =(x-3)\left(2 x^{2}+9 x-5\right) \\
& =(x-3)\left(2 x^{2}-x+10 x-5\right) \\
& =(x-3)[x(2 x-1)+5(2 x-1)] \\
& =(x-3)(2 x-1)(x+5)
\end{aligned}
$$

a. $\quad x+\frac{1}{5}<1 \frac{1}{3} x+\frac{8}{15} \leq \frac{x}{5}+1 \frac{2}{3}, \quad x \in \mathrm{R}$

$$
\begin{aligned}
& \frac{5 x+1}{5}<\frac{4 x}{3}+\frac{8}{15} \leq \frac{x}{5}+\frac{5}{5} \\
& \frac{5 x+1}{5}<\frac{20 x+8}{15} \leq \frac{3 x+25 x}{15}
\end{aligned}
$$

$$
\frac{5 \mathrm{x}+1}{5}<\frac{20 \mathrm{x}+8}{15} \text { and } \frac{20 \mathrm{x}+8}{15} \leq \frac{3 x+25 x}{15}
$$

$$
15 x+3<20 x+8 \text { and } 17 x \leq 17
$$

$$
-5<5 x \quad \text { and } \quad x \leq 1
$$

$$
-1<x
$$

Solution set $\{\mathrm{x}:-1<\mathrm{x} \leq 1 \quad x \in \mathrm{R}\}$

b. \quad Mean $=18$

x	f	$f x$
5	6	30
10	4	40
15	6	90
20	12	240
25	X	25 x
30	4	120
	$32+\mathrm{x}$	$520+25 \mathrm{x}$

$$
\text { Mean }=\frac{e f x}{e f}
$$

$$
\begin{aligned}
18=\frac{520+25 x}{32+x} \quad=\quad 576+18 x & =52+25 x \\
56 & =7 x \\
x & =
\end{aligned}
$$

c. $\quad 2 x-3 y+18=0$
$3 y=2 x+18$

$$
\begin{equation*}
y=\frac{2}{3} x+6 \tag{i}
\end{equation*}
$$

Slope of AP $=\frac{-3}{2}$
Equation of AP

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-7=\frac{-3}{2}[x-(-5)] \\
& 2 y-14=-3 x-15
\end{aligned}
$$

$$
3 x+2 y+1=0
$$

$$
\begin{equation*}
3 x+2 y=-1 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
2 x-3 y=-18 \tag{ii}
\end{equation*}
$$

Multiplying eg. (i) by 3 an d(ii) by 2

$$
\begin{align*}
& 9 x+6 y=-3 \tag{iii}\\
& 4 x-6 y=-36 \tag{iv}\\
& \text { Adding (i) } \&(i i) \\
& 13 x=-39 \\
& x=-3
\end{align*}
$$

Mupling (i) by 3 and (ii) by

Substituting value of x in eg. (i)

$$
\begin{gathered}
3(-3)+2 y=-1 \\
-9+2 y=-1 \\
2 y=8 \\
y=4
\end{gathered}
$$

$p(-3,4)$
Q.3.
a. $\left[\begin{array}{rr}3 & -2 \\ -1 & 4\end{array}\right]\left[\begin{array}{l}4 x \\ 2\end{array}+33-4\left[\begin{array}{l}-4 \\ 5\end{array}=2\right.\right.$
$\left[\begin{array}{cc}3(4 x) & -2(2) \\ -1(4 x) & +4(2)\end{array}\right]+\binom{-12}{15}=\left[\begin{array}{c}-6 \\ 18 y\end{array}\right)$
$\left[\begin{array}{rr}12 x & -4 \\ -4 x & +8\end{array}\right]+\binom{-12}{15}=\binom{-6}{18 y}$
$\left[\begin{array}{cc}12 x & -4+(-12) \\ -4 x & +8+15\end{array}\right]=\left[\begin{array}{c}-6 \\ 18 y\end{array}\right]$
$\left[\begin{array}{cc}12 x & -16 \\ -4 x & +23\end{array}\right]=\binom{-6}{18 y}$
Equating the matrices

$$
\begin{aligned}
& 12 \mathrm{x}-16=-6 \\
& 12 \mathrm{x}=10 \\
& \mathrm{x}=\frac{10}{12} \\
& x=\frac{5}{6} \\
&-4 \mathrm{x}+23=18 \mathrm{y}
\end{aligned}
$$

$$
\begin{gathered}
-4\left(\frac{5}{6}\right)+23=18 y \\
\frac{-10}{3}+23=18 y \\
-10+69=54 y \\
\frac{59}{54}=y \\
\frac{5}{54}=y
\end{gathered}
$$

b. Solution:

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\cot A+\tan B}{\cot B+\tan A} \\
& =\frac{\frac{\cot A+\tan B}{\tan B}+\frac{1}{\cot A}}{} \\
& =(\cot A+\tan B) \div\left(\frac{\cot A+\tan B}{\cot A \cdot \tan B}\right) \\
& =(\cot A+\tan B) \times \frac{\cot A \cdot \tan B}{(\cot A+\tan B)} \\
& =\cot A \cdot \operatorname{tab} B
\end{aligned}
$$

\therefore L.H.S. $=$ R.H.S
... hence proved.
c. Solution:
\square PQRS is a parallelogram
$P Q=16 \mathrm{~cm}$
$Q R=10 \mathrm{~cm}$
$R L: L P=2: 3$

To find: PN, RM

Proof:

	Statement	Reason		
1)	In $\triangle R Q L \& \Delta P N L$, $\angle R Q L ~$$\angle \mathrm{PNL}$			
$\angle \mathrm{RLQ}=\angle \mathrm{PLN}$			\quad Alternate angles are equal	V.O.As
:---				

	$\therefore \mathrm{PN}=\frac{10 \times 3}{2}$ $\mathrm{PN}=15 \mathrm{~cm}$	Simplification
5)	In $\triangle \mathrm{RLM} \& \Delta \mathrm{PLQ}$, $\angle \mathrm{RLM}=\angle \mathrm{PLQ}$ $\angle \mathrm{LRM}=\angle \mathrm{LPQ}$	(V.O.As) alternate angles are equal
6)	$\Delta \mathrm{RLM} \sim \Delta \mathrm{PLQ}$	By AA axiom of similarity
7)	$\frac{\mathrm{RL}}{\mathrm{PL}}=\frac{\mathrm{RM}}{\mathrm{PQ}}$	c.s.s.t.p.
8)	$\frac{2}{3}=\frac{\mathrm{RM}}{16}$	Substitution
9)	$\mathrm{RM}=\frac{16 \times 2}{3}$	
$\mathrm{RM}=\frac{32}{3}=10 \frac{2}{3} \mathrm{~cm}$	Simplification	

m^{2}
Q.4.
a.

$$
\begin{aligned}
& 3 x-1=\frac{7}{x} \\
& 3 x^{2}-x=7 \\
& 3 x^{2}-x=0 \quad \mathrm{~b}=-1 \quad \mathrm{c}=-7 \\
& \mathrm{a}=3 \quad \\
& x=-\mathrm{b}+\frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& \\
& =-(-1) \pm \frac{(-1)^{2-4 \times 3 \times(-7)}}{2 \times 3} \\
& \\
& =+1 \pm \frac{1+85}{6}=\frac{1 \pm 9.22}{6}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x} & =\frac{1+9.22}{6} & & \text { or } \mathrm{x}=\frac{1-9.22}{6} \\
& =\frac{10.22}{6} & & \text { or } \mathrm{x}=\frac{1(9.22-1)}{6}
\end{aligned}
$$

$$
=1.703 \quad \text { or } \quad x=\frac{-8.22}{6}=
$$

$$
=1.7
$$

$$
\text { or } \mathrm{x}=-1.37=\mathrm{x}=-1.4
$$

b. Prove: $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cdot \cos ^{2} \theta$

LHS $=\sin 60+\cos 60$

$$
\begin{aligned}
& =\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3} \\
& =\left(\sin ^{2} \theta^{-}+\cos ^{2} \theta\right)\left(\sin ^{4} \theta^{-}-\sin ^{2} \theta \cos ^{2} \theta+\cos ^{4} \theta\right) \\
& =\left(\sin ^{2} \theta^{-}+\cos ^{2} \theta=1\right) \\
& =\sin ^{4} \theta^{-}+\sin ^{2} \theta \cos ^{2} \theta+\cos ^{4} \theta \\
& =\sin ^{4} \theta^{-}+\cos ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta \\
& =\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2}\right) \theta^{2}-\sin ^{2} \theta^{2} \cos ^{2} \theta \\
& =a^{2}+b^{2}=(a+b)^{2}-2 a b
\end{aligned}
$$

$=\left(\sin ^{2} \theta+\left(\cos ^{2} \theta\right)-2 \sin ^{2} \theta \cos ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta\right.$
$=1-3 \sin ^{2} \theta \cos ^{2} \theta$
$=$ RHS
Hence Proved.
c. (i) $\mathrm{p}(2,3)$
(ii) $\mathrm{p}^{\prime \prime}(2,-3)$
(iii) $\quad 9^{\prime}(4,2)$
(iv) Parallelogram

Area $x=\frac{1}{2} \times 6 \times 4+$
(graph paper)

Section B (40 marks)

Q.5.
a. $\frac{x^{2}+3 x-4}{3 x-4}=\frac{3 x^{2}+2 x+9}{2 x+9}$

Componendo\&Dividendo

$$
\begin{gathered}
\frac{x^{2}+3 x-4+3 x-4}{x^{2}+3 x-4-3 x+4}=\frac{3 x^{2}+2 x+9+2 x+9}{3 x^{2}+2 x+9-2 x-9} \\
\frac{x^{2}+6 x-8}{x^{2}}=\frac{3 x^{2}+4 x+18}{3 x^{2}} \\
\frac{3 x^{2}}{x^{2}}=\frac{3 x^{2}+4 x+18}{x^{2+6 x-8}} \\
3 x^{2}+18 \mathrm{x}-24=3 \mathrm{x}^{2}+4 \mathrm{x}+18 \\
14 \mathrm{x}=42 \\
\mathrm{x}=\frac{42}{14} \\
\mathrm{x}=3
\end{gathered}
$$

b.

Solution:

$$
f(x)=x^{3}+2 x^{2}-k x+10
$$

By remainder theorem, when $f(x)$ is divided by $(x-2)$, the remainder is $f(2)$.
$\mathrm{f}(2)=(2)^{3}+2(2)^{2}-\mathrm{k}(2)+10$

$$
\begin{equation*}
=8+8-2 k+10 \tag{i}
\end{equation*}
$$

$f(2)=26-2 k$
$(x-2)$ is a factor of $f(x)$... given
\therefore from (i) \& (ii)

$$
26-2 k=0
$$

$$
\therefore 2 k=26
$$

$$
\therefore \mathrm{k}=13
$$

$$
\therefore f(x)=x^{3}+2 x^{2}-13 x+10
$$

By remainder theorem, when $f(x)$ is divided by $(x+5)$, the remainder is $f(-5)$.

$$
\begin{aligned}
\therefore f(-5) & =(-5)^{3}+2(-5)^{2}-13(-5)+10 \\
& =-125+50+65+10 \\
& =-125+125
\end{aligned}
$$

$$
f(-5)=0
$$

By factor theorem $\because f(-5)=0$
$(x+5)$ is a factor of $f(x)$.
c. Solution:
$R(0, y)$ is point on y-axis
$P(-4,5) \equiv\left(x_{1}, y_{2}\right) \& Q(3,2) \equiv\left(x_{2}, y_{2}\right)$
By section formula,

$$
\begin{aligned}
& \mathrm{R}(0, \mathrm{y})=\left\{\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{~m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right\} \\
& \mathrm{R}(0, \mathrm{y})=\left\{\frac{\mathrm{m}_{1}(3)+\mathrm{m}_{2}(-4)}{\mathrm{m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{~m}_{1}(2)+\mathrm{m}_{2}(5)}{\mathrm{m}_{1}+\mathrm{m}_{2}}\right\} \\
& \mathrm{R}(0, \mathrm{y})=\left\{\frac{3 \mathrm{~m}_{1}-4 \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{2 \mathrm{~m}_{1}+5 \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right\}
\end{aligned}
$$

Equating $x \& y$ co-ordinates, we get,

$$
\begin{array}{rlrl}
0 & =\frac{3 m_{1}-4 m_{2}}{m_{1}+m_{2}} \quad \& & y & =\frac{2 m_{1}-5 m_{2}}{m_{1}+m_{2}} \\
\therefore 0 & =3 m_{1}-4 m_{2} & y & =\frac{2(4)+5(3)}{4+3} \\
\therefore 3 m_{1} & =4 m_{2} & y & =\frac{8+15}{7} \\
\frac{m_{1}}{m_{2}} & =\frac{4}{3} & y & =\frac{23}{7}
\end{array}
$$

i) $P R: R Q=m_{1}: m_{2}=4: 3$
ii) Co-ordinates of $R(0, y)=\left(0, \frac{23}{7}\right)$
iii)

For graph:

Area $\square \mathrm{PMNQ}=\frac{1}{2}(\operatorname{sum} \square$ sides $) \times \mathrm{h}$

$$
\begin{aligned}
& =\frac{1}{2}(5+2) \times 7 \\
& =\frac{49}{2}
\end{aligned}
$$

Area $\square \mathrm{PMNQ}=\underline{24.5 \text { sq. units }}$
a. Let $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\mathrm{k}$
$\mathrm{k}=\mathrm{ak} \mathrm{y}=\mathrm{bk} \quad \mathrm{z}=\mathrm{ck}$
To prove $=\frac{x^{3}}{a^{2}}+\frac{y^{3}}{b^{2}}+\frac{z^{3}}{c^{2}}=\frac{(x+y+z)^{3}}{(a+b+c)^{2}}$
LHS $=\frac{a^{3} b^{3} c^{3}}{a^{2} b^{2} c^{2}}$
$=\mathrm{k}^{3}(\mathrm{a}+\mathrm{b}+\mathrm{c})$

RHS $=\frac{(a k+b k+c k)^{3}}{(a+b+c)^{2}}$
$=\frac{\left(\left(k^{3}(a+b+c)\right)^{3}\right.}{(a+b+c)^{2}}$
$=\frac{\left.k^{3}(a+b+c)\right)^{3}}{(a+b+c)^{2}}$
$=\mathrm{k}^{3}(\mathrm{a}+\mathrm{b}+\mathrm{c})$
$=$ LHS Hence proved
b. $\quad A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right] I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\mathrm{A}^{2}=8 \mathrm{~A}+\mathrm{kI}$

According to the given condition:

$$
\begin{aligned}
& A^{2}=18 A+K I \\
& A^{2}-8 A=K I
\end{aligned}
$$

$$
\left[\begin{array}{rr}
1 & 0 \\
-1 & 7
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad-8\left[\begin{array}{cc}
1 & 0 \\
-1 & 7
\end{array}\right]=\mathrm{k}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{rr}
1 & 0 \\
-8 & 49
\end{array}\right]-\left[\begin{array}{rr}
8 & 0 \\
8 & 56
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{k} & 0 \\
0 & \mathrm{k}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1-8 & 0 \\
-8+8 & 49-56
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{k} & 0 \\
0 & \mathrm{k}
\end{array}\right]
$$

$$
\left[\begin{array}{rr}
-7 & 0 \\
0 & -7
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{k} & 0 \\
0 & \mathrm{k}
\end{array}\right]
$$

By equality of matrices corresponding values are equal

$$
\therefore \mathrm{k}=-7
$$

c. \quad Let $A=(4,2)$

Let $\mathrm{B}=(3,-5)$
Let k on x -ax
By section formulas

$$
(x, 0)=
$$

Q.7.
a. In $\triangle \mathrm{AMN}$ and $\triangle \mathrm{ACB}$
$\angle A=\angle A \quad$ (common angle)
$\frac{\mathrm{AM}}{\mathrm{AC}}=\frac{\mathrm{AN}}{\mathrm{AB}}=\frac{1}{2}$
$\therefore \triangle \mathrm{AMN} \sim \Delta \mathrm{ACB}$

$$
\begin{aligned}
\frac{\text { Area of } \triangle A M N}{\text { Area of } \triangle A C B} & \left.=\frac{A M}{A C}\right)^{2} \\
& =\left(\frac{2}{4}\right)^{2} \\
& =\left(\frac{1}{2}\right)^{2}
\end{aligned}
$$

$$
\frac{\text { Area of } \triangle \mathrm{AMN}}{\text { Area of } \triangle \mathrm{ACB}}=\frac{1}{4}
$$

b. $\quad \mathrm{P}=` 600$
$\mathrm{N}=24$ months
MV = ` 15,450
$\mathrm{R}=$?
$\mathrm{MV}=\mathrm{pxn}+\mathrm{px} \frac{n(n+1)}{100} \times \frac{1}{12 \times 2}$
$15450=600 \times 24+\frac{600 \times 24 \times 25 \times r}{100 \times 12 \times 2}$
$15450=14400+25$ X 6
$15450=150 r$
$r=7 \%$
c. (graph paper)
Q.8.
a. $\quad \frac{3 x+4}{x+5}=\left(\frac{8}{5}\right)^{2}$

$$
\frac{3 x+4}{x+5}=\frac{64}{25}
$$

$$
75 x+100=64 x+320
$$

$$
11 x=220
$$

$$
x=20
$$

b. Solution:

$$
\begin{array}{rlrl}
& \frac{1}{2} \times 6-\frac{2 x}{3} \times 6 \\
-2 & \leq 3-4 x \\
-12 & \leq \begin{aligned}
\frac{1}{2} \times 6-\frac{2 x}{3} \times 6 & \leq \frac{11 \times 6}{6} \\
\therefore 4 x & \leq 3+12 \\
\therefore 4 x & \leq 15 \\
\therefore x & \leq \frac{15}{4} \\
\therefore x & \leq 3.75
\end{aligned} & \leq 11 \\
3-11 & \leq 4 x \\
& \therefore-8 & \leq 4 x \\
& \text { i.e. } 4 x & \geq-8 \\
x & \geq-\frac{8}{4} \\
& \therefore x & \geq-2
\end{array}
$$

$\therefore-2 \leq \mathrm{x} \leq 3.75, \mathrm{x} \in \mathrm{N}$
\therefore S.S. $=\{1,2,3\}$
The graph of the solution is:

c. (i) $\mathrm{l}^{2}=\mathrm{h}^{2}+\mathrm{v}^{2}$

$$
\begin{aligned}
& (25)^{2}=h^{2}+(7)^{2} \\
& 625=h^{2}+49 \\
& h^{2}=576 \\
& \mathrm{~h}=24 \mathrm{~cm}
\end{aligned}
$$

(ii) Volume of the solid $=v$ of conc $+v$ of hemisphere

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} \mathrm{~h}+\frac{2}{3} \pi \mathrm{r}^{3} \\
& =\frac{1}{3} \pi \mathrm{r}^{2}(\mathrm{~h}+2 \mathrm{r}) \\
& =\frac{1}{3} \times \frac{22}{7} \times 7 \times 7(24+2(7)) \\
& =\frac{1}{3} \times 22 \times 7 \times 38 \\
& =\frac{5852}{3} \\
& =1950.666 \mathrm{~cm}^{2} \\
& =1950.67 \mathrm{~cm}^{2}
\end{aligned}
$$

(iii) SA of solid $=\mathrm{CSA}$ of conc +CSA of hemisphere

$$
=\pi r(1+2 r)
$$

$$
\begin{aligned}
& =\frac{22}{7} \times 7(25+2 \times 7) \\
& =22 \times 39=858 \mathrm{~cm}^{2}
\end{aligned}
$$

Q.9.
a. $\quad \mathrm{MP}=` 40,000 /-$

For shopkeeper
Purchased price $=40,000-\frac{1}{100} \times 40,000$ $=40,000-4000$ $=36,000$
Tax paid $=\frac{5}{100} \times 36000$

$$
=` 1800
$$

Selling price $=40,000-\frac{5}{100} \times 40,000$

$$
\begin{aligned}
& =40,000-2000 \\
& =38,000
\end{aligned}
$$

Tax changed $=\frac{5}{100} \times 38,000$

$$
=1900
$$

VAT $=$ Tax changed - Tax paid
$=1900-1800$
$=` 100$

Amt paid by customer $=38000+1900$

$$
=39,900 /-
$$

Q.9.
b. Construction
Q.9.
c. let two natural numbers be x and $8-\mathrm{x}$

$$
\begin{aligned}
& \frac{1}{x}-\frac{1}{8-x}=\frac{2}{15} \\
& \frac{9-x-x}{x(8-x)}=\frac{2}{15} \\
& \frac{8-2 x}{8 x-x^{2}}=\frac{2}{15} \\
& 120-30 x=16 x-2 x^{2} \\
& 2 x^{2}-16 x-30 x+120=0 \\
& 2 x^{2}-46+120=0 \\
& 2 x^{2}-23 x+60=0
\end{aligned}
$$

$x^{2}-20 x+3 x+60=0$
$x(x-20)-3(x-20)=0$
$(x-20)(x-3)=0$
$x-20=0$ or $x-3=0$
$x=0$ or $x=3$

But $x=20$ is not possible
$\therefore x=3$
$\therefore 8-x=8-3=5$
Thus the two numbers are 3 and 5 .
Q.10.
a. Distance Formula for $(3,3)$ an $d(9,0)$

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(3-9)^{2}+(3-0)^{2}} \\
& =\sqrt{36+9} \\
& =\sqrt{45}
\end{aligned}
$$

Distance Formula for $(3,3)$ and $(12,21)$
$=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$
$=\sqrt{(3-12)^{2}+(3-21)^{2}}$
$=\sqrt{81+324}$
$=\sqrt{405}$
Distance Formula for $(3,3)$ and $(12,21)$
$=\sqrt{(12-9)^{2}+(21-0)^{2}}$
$=\sqrt{9+441}$
$=\sqrt{450}$
$\therefore(\sqrt{405})^{2}+(\sqrt{45})^{2}=(\sqrt{450})^{2}$
$405+45=450$
$450=450$
\therefore By phythogoras Theorem
$(9,0),(3,3)$ and $(12,21)$ are the vertices of a right angled triangle.
b.
c. let the number of shares be x

Case I :
\therefore Investment $=90 \times x$

$$
=’ 90 x
$$

\therefore No of shares $=\frac{\text { Investment }}{\text { market value }}$

$$
=\frac{90 x}{33}=\frac{30 x}{11}
$$

\therefore Income $=$ No. of shares \times Rate $\mathrm{x} V$

$$
\begin{aligned}
& =\frac{30 x}{11} \times \frac{15}{11} \times 50 \\
& =\frac{225 x}{11}
\end{aligned}
$$

Case II
Investment $=110 \times x$

$$
=` 110 x
$$

\therefore No of shares $=\frac{110 x}{33}=\frac{10 x}{3}$
\therefore Income $=$ No. of shares $\times \mathrm{NV} \times$ Rate

$$
=\frac{10 x}{3} \times 50 \times \frac{15}{100}
$$

$$
=\frac{75 x}{3}
$$

$$
=25 x
$$

According to condition
$25 x-\frac{225 x}{11}=450$
$\frac{275 x-225 x}{11}=450$
$50 x=450 \times 11$
$x=\frac{450 \times 11}{50}$
$x=` 99$ shares
Q.11.
a. $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$
$\sin \theta=\sqrt{2} \cos \theta-\cos \theta$

$$
=\cos \theta(\sqrt{2}-1)
$$

$\frac{\sin \theta}{\cos \theta}=\sqrt{2}-1$
$\frac{\cos \theta}{\sin \theta}=\frac{1}{\sqrt{2}-1}$
$\frac{\cos \theta}{\sin \theta}=\frac{\sqrt{2}+1}{(\sqrt{2})^{2}-1}$

$$
\begin{aligned}
& =\sqrt{2}+1 \\
\cos \theta & =\sqrt{2} \sin \theta+\sin \theta \\
\cos \theta & -\sin \theta=\sqrt{2} \sin \theta
\end{aligned}
$$

b. Graph

