GREENLAWNS HIGH SCHOOL
 PRELIMINARY EXAMINATION YEAR 2016-2017

SUBJECT	$:$ PHYSICS PRACTICAL
TIME	$: 1$ HOUR

Note : The first 10 minutes have to be spent in reading this paper \& checking your apparatus. Use the hour at the end of these 10 minutes to perform your practical. Write aim, observation, calculation and conclusion only. Do not copy the procedure.

Aim - To determine the refractive index of a glass slab.
Apparatus - Wooden board, White sheet of paper, board pins, headed pins, glass slab, protractor, compass.
Procedure - 1) Take a white sheet of paper \& fix it on a wooden drawing board with pins.
2) Place a glass slab on the paper \& trace its outline. Mark the glass slab as ABCD.
3) Mark a point P, on side $A B$, at a distance of 1 cm from corner A. Draw a normal NPN at P.
4) Draw PX (incident ray) at 45° to this normal.
5) Mark 2 points $P_{1} \& P_{2}$ on PX which one $3-4 \mathrm{~cm}$ apart.
6) Place the glass slab on the outline drawn Position 2 pins at $\mathrm{P}_{1} \& \mathrm{P}_{2}$ on line PX .
7) Look at the images of $P_{1} \& P_{2}$ from side CD.
8) Fix 2 pins $P_{3} \& P_{4}$ where the images of $P_{1} \& P_{2}$ are seen so that $P_{1}, P_{2}, P_{3} \& P_{4}$ all appear to be in a straight line.
9) Take off the slab \& pins. Draw small circles around the pin holes on the sheet.
10) Draw line RY which passes through $P_{3} \& P_{4} \&$ meets $C D$ at R (emergent ray). Draw a normal at R \& mark $\angle \mathrm{e}$.
11) Join P \& R refracted ray.
12) Measure \& enter the values of $\angle \mathrm{r} \& \angle \mathrm{e}$ in your table.
13) With ' P ' as centre \& any suitable radius draw a circle which cuts the incident ray at ' E ' \& refracted ray at ' G '.
14) From points $E \& G$, draw lines which make 90° angle with normal NPN \& touch the normal at points F \& H respectively.
15) Measure EF \& GH \& record their values in your table.
16) Find the ratio of EF \& GH (correct to one decimal place) \& enter this value in your table. This is the refractive index of the slab μ_{1}.
17) Repeat steps 1 to 16 to calculate μ_{2}, μ_{3} for angle of incidence $55^{\circ} \& 60^{\circ}$ respectively.
18) Calculate μ_{g} by finding the average of $\mu_{1}, \mu_{2} \& \mu_{3}$.
19) a) Briefly list 2 precautions you would take to ensure the accuracy of your findings.
b) If the glass slab was heated would the values of the following rise, fall or stay same?
i) Refractive Index of the slab.
ii) Speed of light in the slab.

Observation Table

$\angle \mathrm{i}$	$\angle \mathrm{r}$	$\angle \mathrm{e}$	$\mathrm{EF}(\mathrm{cm})$	$\mathrm{GH}(\mathrm{cm})$	$\mu=\frac{E F}{G H}$
45°					$\mu_{1}=$
55°					$\mu_{2}=$
60°					$\mu_{3}=$

