GREENLAWNS SCHOOL, WORLI

Terminal Examination 2025-26

Mathematics

STD: IX Marks: 80
Date:15/09/2025 Time: 3 hrs

Section A [40 marks]

(Answer all questions from this Section.)

Question 1 Choose the correct answers to the questions from the given options.

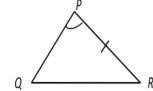
(Do not copy the question, write the correct answers only.)

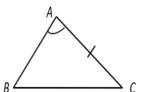
[15]

- i. $(-2 \sqrt{3})$ (-2 + $\sqrt{3}$) when simplified is
 - (a) positive and irrational

(b) positive and rational

(c) negative and irrational


(d) negative and rational


- ii. The coefficient of x^2 in $(3x + x^3)(x + 1)$ is
 - **(a)** 3
- **(b)** 1
- (c) 4

(d) 2

- iii. One of the factors of $(x 1) (x^2 1)$ is
 - (a) $x^2 1$
- **(b)** x + 1
- (c) x 1
- (d) x + 4
- iv. What is the median of the values 11, 7, 6, 9, 12, 15, 19
 - (a) 9
- **(b)** 11
- **(c)** 12
- (d) 15

v. Given that $\angle A = \angle P$ and AC = PR. Then, which of the following conditions are true for Δ PQR and Δ ABC to be congruent.

- a) BC = QR by ASS criteria
- **b)** BC = QR by SSA criteria
- c) AB = PQ by SAS criteria
- d) AB = PQ by SSA criteria
- vi. How many real numbers are there between 3 and 8 (Including 3 and 8)?
 - a) Six
- **b)** Four
- c) Infinite

d) Five

- vii. What do we get after factorizing $x^2+6x-27$?
 - **a)** (x+9)(x-3)
- **b)** (x-9)(x+3)
- **c)** (x-9)(x-3)
- **d)** (x+9)(x+3)
- **viii.** $10^{-3} = 0.001$ can be written in the form of logarithm as
 - **a)** $\log 1 = -3$
- **b)** log 0.001 = 3
- c) $\log 3 = -0.001$
- **d)** $\log 0.001 = -3$
- ix. From the table given below, how many students weigh equal to or more than 55kg?

```			,		I) 0	
Students	4	12	3	2	3	1
Weight(kg)	40-45	45-50	50 - 55	55 - 60	60 - 65	65 - 70

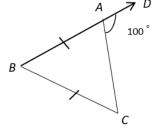
- **a)** 2
- **b)** 3

**c)** 20

**d)** 6

- **x.** If a point is in 2nd quadrant, then it is in _____ form.
  - a) (+, +)
- **b)** (+, -)
- **c)** (-, +)

- **d)** (-, -)
- **xi.** Which of the following option is correct according to the below statements?
  - i) Every rational number is real number.
  - ii) Every real number is rational number.
  - a) Both statements are correct
  - b) Statement (i) is correct and statement (ii) is incorrect
  - c) Statement (i) is incorrect and statement (ii) is correct
  - d) Both statements are incorrect
- xii. Point P(0, 4) lies along _____ axis.
  - a) OX
- b) OX'
- c) OY


d) OY'

- **xiii.** Find the value of angle ABC if AB = BC.
  - **a)** 80°

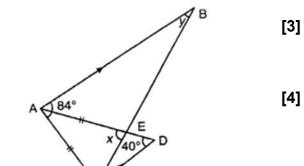
**b)** 100°

**c)** 120°

**d)** 20°



- **xiv.** Which of the following is not a criterion for congruency of triangles?
  - (a) SAS
- (b) ASA
- (c) SSA


(d) SSS

- **xv.** Which of the following is (are) equivalent to  $16^{-12}$ ?
  - **(a)** 8
- **(b)** 14
- (c) -4

(d) 4⁻¹

## **Question 2**

- (a) Rationalize the denominator and simplify:  $\frac{3}{5-\sqrt{3}} + \frac{2}{5+\sqrt{3}}$
- (b) Mr. Kumar borrowed ₹ 15,000 for two years. The rate of interest for the two successive years are 8% and 10% respectively. If he repays ₹ 6,200 at the end of the first year, find the outstanding amount at the end of the second year. [3]
- (c) i. Expand:  $(3x 2y)^3$ 
  - ii. Factorize: 8x + 16y
- d) In the figure alongside AB // CD and AE = AC, Find the x and y from the information Given

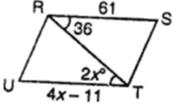


:

- (a) In a two-digit number, the sum of digits is 13. If the number is subtracted from the one obtained by interchanging the digits, the result is 45. What is the number? [4]
- A (-2, 4), C (4, 10) and D (-2, 10) are the vertices of a square ABCD. Use graphical (b) method to find the coordinates of the fourth vertex B. Also, find
  - (i) the coordinates of the mid-point of BC,
  - (ii) the coordinates of the mid-point of CD and
  - (iii) the coordinates of the point of intersection of the diagonals of the square ABCD. [4]
- Factorize:  $8x^3 127v^3$ (c) If a - b = 7 and  $a^3 - b^3 = 133$ , find: ab ii. [4]

## Section - B [40 Marks]

(Attempt any four questions)


#### **Question 4**

(a) Solve: 
$$y + 2x = 5$$
;  $3y - 5x = 4$ 

- Simplify:  $\frac{6.(8)^{n+1} + 16.2^{3n-2}}{10.2^{3n+1} 7.(8)^n}$ (b) [3]
- Express  $\frac{3-5\sqrt{5}}{3+2\sqrt{5}}$  in the form  $(a\sqrt{5}-b)$  where a and b are simple fractions. (c) [4]

#### **Question 5**

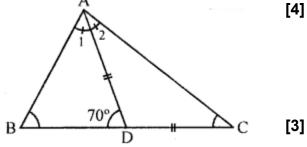
(a) Prove that  $\triangle RST \cong \triangle TUR$ when x = 18.



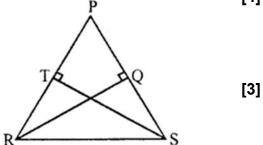
[3]

- (b) Construct a frequency table for the following set of data of weights (in gms) of 30 oranges using equal class intervals one of them being 50-60 (60 not included). 45, 55, 30, 85, 75, 85, 40, 60, 65, 40, 60, 75, 70, 60, 70, 85, 85, 80, 35, 45, 40, 40, 50, 60, 65, 55, 45, 30, 80, 85, 75.
  - [3]

- i. Find  $p^2 + q^2$  if p - q = 6 and p + q = 14(c)
  - If  $x + \frac{1}{x} = 3$ , find  $x^2 + \frac{1}{x^2}$ ii. [4]


(a) Simplify: 
$$\left(\frac{1}{4}\right)^{-2} - 3(8)^{2/3} \times 4^0 + \left(\frac{9}{16}\right)^{-1/2}$$
 [3]

- Find x: If  $\log_{10} 5 + \log_{10} (5x + 1) = \log_{10} (x + 5) + 1$ . (b) [3]
- Factorize:  $a^3 + ab(1 2a) 2b^2$ (c) i. Factorize:  $4x^2 - 4x + 1$


ii. [4]

## **Question 7**

In a  $\triangle ABC$ , AD bisects  $\angle BAC$  and AD = DC. (a) If  $\angle BDA = 70^{\circ}$ , calculate ∠ACD and ∠ABD.



- I Find,  $a^2 + b^2 + c^2$  if a + b + c = 17 and ab + bc + ca = 30. (b) ii Find the products:  $(x + y) (x - y) (x^2 + y^2)$ [4]
- In the given figure, if PR = PS, PT = PQ, (c)  $\angle PTS = \angle PQR = 90^{\circ}$ . prove that RQ = ST and RT = SQ.



#### **Question 8**

- ABC is an isosceles triangle with AB = AC. Draw AP  $\perp$  BC to show that  $\angle$ B =  $\angle$ C. (a) [2]
- Prove the following: (b)
  - (i)  $\log_{10} 4 \div \log_{10} 2 = \log_3 9$
  - (ii)  $\log_{10} 25 + \log_{10} 4 = \log_5 25$ [4]
- Draw the graph of equation y = 3x 4. Find graphically (c) (i) the values of y, when x = -1. (ii) the value of x when y = 5. [4]

## **Question 9**

- (a) If the mean of x, x + 2, x + 4, x + 6, x + 8 is 24, find x. [3]
- (b) The sum of two numbers is 2. If their difference is 20, find the numbers. [3]
- In what period will ₹ 12,000 yield ₹ 3,972 as compound interest at 10% per annum, (c) if compounded on yearly basis? [4]

*****

## ANSWER KEY (grade 9 math)

## Question 1 Choose the correct answers to the questions from the given options.

(Do not copy the question, write the correct answers only.)

[15]

[3]

[3]

- i. (b) positive and rational
- ii. **(a)** 3
- iii. (c) x 1
- iv. (b) 11
- v. c) AB = PQ by SAS criteria
- vi. c) Infinite
- vii. a) (x+9)(x-3)
- **viii. d)**  $\log 0.001 = -3$
- ix. d) 6
- **x. c)** (-, +)
- xi. b) Statement (i) is correct and statement (ii) is incorrect
- xii. a) OX
- xiii. d) 20°
- xiv. (c) SSA
- **xv.** (d)  $4^{-1}$

#### **Question 2**

**(a)** Rationalize the denominator and simplify: Solution:

$$\frac{3}{5-\sqrt{3}}+\frac{2}{5+\sqrt{3}}$$

$$=\frac{3(5+\sqrt{3})}{(5-\sqrt{3})(5+\sqrt{3})}+\frac{2(5-\sqrt{3})}{(5+\sqrt{3})(5-\sqrt{3})}$$

(Rationalising the denominator)

$$=\frac{15+3\sqrt{3}}{25-3}+\frac{10-2\sqrt{3}}{25-3}$$

$$=\frac{15+3\sqrt{3}}{22}+\frac{10-2\sqrt{3}}{22}$$

$$=\,\frac{15+3\sqrt{3}+10-2\sqrt{3}}{22}\,=\,\frac{25+\sqrt{3}}{22}$$

(b) Mr. Kumar borrowed ₹ 15,000 for two years. The rate of interest for the two successive years are 8% and 10% respectively. If he repays ₹ 6,200 at the end of the first year, find the outstanding amount at the end of the second year.

Solution:

For 1st year:

S.I = 15000×8×1100 = ₹ 1200

Amount = ₹ (15000 + 1200) = ₹ 16200 Remaining amount after repayment = ₹ (16200 - 6200) = ₹ 10000 For 2nd year : P = ₹ 10000 S.I.=  $10000 \times 10 \times 1100 = ₹ 1000$ Amount at the end of 2nd year = ₹ 10000 + ₹ 1000 = ₹ 11000

(c) i. Expand: 
$$(3x - 2y)^3$$
  
ii. Factorize:  $8x + 16y$  [3]  
Sol: i  $(3x - 2y)^3$   
=  $(3x)^3 - 3(3x)^2 (2y) + 3(3x) (2y)^2 - (2y)^3$   
=  $27x^3 - 3 \times 9x^2 \times 2y + 3 \times 3x \times 4y^2 - 8y^3$   
=  $27x^3 - 54x^2y + 36xy^2 - 8y^3$ 

ii. Solution: 
$$8x + 16y = 8(x + 2y)$$

d) In the figure alongside AB // CD and AE = AC, Find the x and y from the information Given

Sol: :: AB || CD and BC is its transversal

∴ 
$$\angle$$
y =  $\angle$ 1 (alternate angle)

In ∆ECD,

Ext. 
$$\angle x = \angle C + \angle D = \angle 1 + 40^{\circ}$$

In ∆ACE,

AE = AC (given)

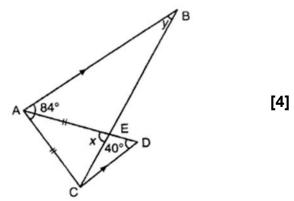
$$\therefore \angle ACE = \angle AEC = x$$

∴ AB || CD

 $\therefore \angle BAC + \angle ACB = 180^{\circ}$  (colinear angles)

$$84^{\circ} + x + \angle 1 = 180^{\circ}$$

$$\Rightarrow$$
 x +  $\angle$ L = 180° – 84° = 96°


$$\Rightarrow \angle 1 + 40^{\circ} + \angle L = 96^{\circ} (\because x = \angle 1 + 40^{\circ})$$

$$\Rightarrow$$
 2  $\angle$ 1 = 96  $-$  40 = 56

$$\Rightarrow \angle y = 28^{\circ} (\because \angle 1 = \angle y)$$

But 
$$x = \angle 1 + 40^{\circ} = 28^{\circ} + 40^{\circ} = 68^{\circ}$$

Hence 
$$x = 68^{\circ}$$
,  $y = 28^{\circ}$ 

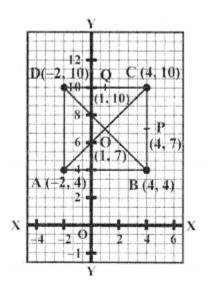


#### **Question 3**

(a) In a two-digit number, the sum of digits is 13. If the number is subtracted from the one obtained by interchanging the digits, the result is 45. What is the number? [4]

Solution:

Sum of two digit of a two digit number = 13


Let units digit = xand tens digit = y  $\therefore$  Number = x + 10y and number by reversing the digit = y + 10xAccording to the conditions, x + y = 13 ... (i)and (y + 10x) - (x + 10y) = 45 $\Rightarrow$  y + 10x - x - 10y = 45  $\Rightarrow$  9x - 9y = 45  $\Rightarrow$  x - y = 5 ... (ii) (Dividing by 9) Adding (i) and (ii)  $2x = 18 \Rightarrow x = 182 = 9$ and subtracting (ii) from (i).  $2y = 8 \Rightarrow y = 82 = 4$ Number =  $x + 10y = 9 + 10 \times 4$ = 9 + 40 = 49

- (b) A (-2, 4), C (4, 10) and D (-2, 10) are the vertices of a square ABCD. Use graphical method to find the coordinates of the fourth vertex B. Also, find
  - (i) the coordinates of the mid-point of BC,
  - (ii) the coordinates of the mid-point of CD and
  - (iii) the coordinates of the point of intersection of the diagonals of the square ABCD. [4]

Sol:

Plot the points A (-2, 4), C (4, 10) and D (-2, 10) on the graph and join them and complete the square

- (i) The fourth point is B whose vertices are (4, 4).
- (ii) The mid-point of BC will be P whose cocordinates will be (4, 7).
- (iii) The mid-point of CD will be Q whose cocordinates will be (1, 10).
- (iv) Its diagonals AC and BD intersect each other at O whose co-ordinates will be (1, 7).



(c) i. Factorize: 
$$8x^3 - 127y^3$$
  
ii. If  $a - b = 7$  and  $a^3 - b^3 = 133$ , find: ab [4]

Solution: i.

$$8x^3 - \frac{1}{27}y^3 = (2x)^3 - \left(\frac{1}{3}y\right)^3$$

ICSESolutions.com

$$= \left(2x - \frac{1}{3}y\right) \left[ (2x)^2 + 2x \times \frac{1}{3}y + \left(\frac{1}{3}y\right)^2 \right]$$
$$= \left(2x - \frac{1}{3}y\right) \left(4x^2 + \frac{2}{3}xy + \frac{1}{9}y^2\right)$$

ii. 
$$a - b = 7$$

Cubing both sides,

(i) 
$$(a - b)^3 = (7)^3$$

$$\Rightarrow$$
 a³ + b³ - 3ab (a - b) = 343

$$\Rightarrow$$
 133 - 3ab × 7 = 343

$$\Rightarrow$$
 133 – 21ab = 343

$$\Rightarrow$$
 - 21ab = 343 - 133 21ab = 210

$$\Rightarrow$$
 ab = 210-21 = -10

## Section – B [40 Marks]

(Attempt any four questions)

#### **Question 4**

(a) Solve: 
$$y + 2x = 5$$
;  $3y - 5x = 4$  [3]

Solution:

(b) Simplify: 
$$\frac{6.(8)^{n+1} + 16.2^{3n-2}}{10.2^{3n+1} - 7.(8)^n}$$

Sol:

$$\frac{6.(8)^{n+1} + 16.2^{3n-2}}{10.2^{3n+1} - 7.(8)^n}$$

$$= \frac{6.(2^3)^{n+1} + 16.2^{3n-2}}{10.2^{3n+1} - 7.(2^3)^n} = \frac{6.2^{3n+3} + 16.2^{3n-2}}{10.2^{3n+1} - 7.2^{3n}}$$

$$= \frac{6.2^{3n}.2^3 + 16.2^{3n}.2^{-2}}{10.2^{3n}.2 - 7.2^{3n}}$$

$$= \frac{2^{3n}(6 \times 2^3 + 16 \times 2^{-2})}{2^{3n}(10 \times 2 - 7)} = \frac{6 \times 8 + 16 \times \frac{1}{4}}{20 - 7}$$

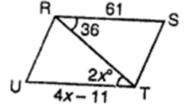
$$= \frac{48 + 4}{13} = \frac{52}{13} = 4$$

(c) Express 
$$\frac{3-5\sqrt{5}}{3+2\sqrt{5}}$$
 in the form  $(a\sqrt{5}-b)$  where a and b are simple fractions. [4]

Solution:

$$\frac{3-5\sqrt{5}}{3+2\sqrt{5}} = \frac{(3-5\sqrt{5})(3-2\sqrt{5})}{(3+2\sqrt{5})(3-2\sqrt{5})}$$
 (Rationalising the denominator)
$$= \frac{9-6\sqrt{5}-15\sqrt{5}+10\times5}{(3)^2-(2\sqrt{5})^2}$$

$$= \frac{9-21\sqrt{5}+20}{9-20} = \frac{59-21\sqrt{5}}{-11}$$


$$= \frac{-59}{11} + \frac{21}{11}\sqrt{5}$$

$$= \frac{21}{11}\sqrt{5} - \frac{59}{11}$$

Which is in the form of  $a\sqrt{5} - b$ 

## **Question 5**

(a) Prove that  $\triangle RST \cong \triangle TUR$  when x = 18.



[3]

[3]

Solution:

When x = 18, then

$$UT = 4x - 11 = 4 \times 18 - 11 = 72 - 11$$

and 
$$2x = 2 \times 18 = 36^{\circ}$$

RT = RT (common)

Hence  $\triangle RST \cong \triangle TUR$  (SAS criterion)

(b) Construct a frequency table for the following set of data of weights (in gms) of 30 oranges using equal class intervals one of them being 50-60 (60 not included). 45, 55, 30, 85, 75, 85, 40, 60, 65, 40, 60, 75, 70, 60, 70, 85, 85, 80, 35, 45, 40, 40, 50, 60, 65, 55, 45, 30, 80, 85, 75.

Solution:

Greatest weight = 85

Lowest weight = 30

Taking class intervals such as 50 – 60, (60 not included)

Class interval (weight in gms)	Tally marks	Frequency
30 – 40	Ш	3
40 - 50	11111	6
50 - 60	111	3
60 – 70	11111	6
70 – 80.	1417	5
80 – 90	1111111	7
Total		30

(c) i. Find 
$$p^2 + q^2$$
 if  $p - q = 6$  and  $p + q = 14$ 

ii. If 
$$x + \frac{1}{x} = 3$$
, find  $x^2 + \frac{1}{x^2}$ 

[4]

**Sol** i. 
$$p-q=6, p+q=14$$

$$2 (p^{2} + q^{2}) = (p + q)^{2} + (p - q)^{2}$$

$$= (14)^{2} + (6)^{2}$$

$$= 196 + 36 = 232$$

$$\therefore p^{2} + q^{2} = 232/2 = 116$$

$$p^2 + q^2 = 232/2 = 11$$

ii. 
$$\left(x + \frac{1}{x}\right)^2 = (3)^2$$

$$(x)^2 + 2 \times x \times \frac{1}{x} + \left(\frac{1}{x}\right)^2 = 9$$

$$x^2 + 2 + \frac{1}{x^2} = 9 \Rightarrow x^2 + \frac{1}{x^2} = 9 - 2 = 7$$

Hence 
$$x^2 + \frac{1}{x^2} = 7$$

#### **Question 6**

(a) 
$$\left(\frac{1}{4}\right)^{-2} - 3(8)^{2/3} \times 4^0 + \left(\frac{9}{16}\right)^{-1/2}$$
 [3]

Sol:

$$\left(\frac{1}{4}\right)^{-2} - 3(8)^{2/3} \times 4^{0} + \left(\frac{9}{16}\right)^{-1/2}$$

$$= \left(\frac{1}{2^{2}}\right)^{-2} - 3(2^{3})^{2/3} \times 1 + \left[\frac{(3)^{2}}{(4)^{2}}\right]^{-1/2}$$

$$= \frac{1}{(2)^{2 \times (-2)}} - 3(2^{3 \times 2/3}) \times 1 + \left(\frac{3}{4}\right)^{2 \times (-1/2)}$$

$$= \frac{1}{2^{-4}} - 3 \times 2^{2} \times 1 + \left(\frac{3}{4}\right)^{-1}$$

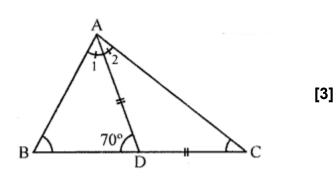
$$= 2^{4} - 3 \times 4 + \frac{4}{3} = 16 - 12 + \frac{4}{3}$$

$$= 4 + 1\frac{1}{3} = 5\frac{1}{3}$$

(b) Find x: If 
$$\log_{10} 5 + \log_{10} (5x + 1) = \log_{10} (x + 5) + 1$$
. [3] Sol:

$$log_{10}5 + log_{10}(5x + 1) = log_{10}(x + 5) + 1$$
  
 $log_{10}5 (5x + 1) = log_{10} (x + 5) + log_{10}10$   
 $log_{10}(5x + 1) = log_{10}10 (x + 5)$   
Comparing, we get  
 $\Rightarrow 5(5x + 1) = 10(x + 5)$   
 $\Rightarrow 25x + 5 = 10x + 50$   
 $\Rightarrow 25x - 10x = 50 - 5$   
 $\Rightarrow 15x = 45 \Rightarrow x = 4515 = 3$   
 $x = 3$ 

(c) i. Factorize: 
$$a^3 + ab(1 - 2a) - 2b^2$$


ii. Factorize:  $4x^2 - 4x + 1$  [4]

Solution:

i. 
$$a^3 + ab (1 - 2d) - 2b^2$$
  
 $= a^3 + ab - 2 a^2b - 2 b^2$   
 $= a (a^2 + b) - 2b (a^2 + b)$   
 $= (a^2 + b) (a - 2b)$   
ii.  $4x^2 - 4x + 1$   
 $= (2x)^2 - 2 \times 2x \times 1 + (1)^2$   
 $= (2x - 1)^2$ 

#### **Question 7**

(a) In a ∆ABC, AD bisects ∠BAC and AD = DC.If ∠BDA = 70°,calculate ∠ACD and ∠ABD.



Sol:

In  $\triangle$ ABC, AD is the bisector of  $\angle$ BAC which meets BC at AD, AD = DC and  $\angle$ BDA = 70°  $\therefore$  AD is the bisector of  $\angle$ BAC

$$\therefore$$
 ∠1 = ∠2 In  $\triangle$ ADC,

But Ext. 
$$\angle ADB = \angle 2 + \angle C$$

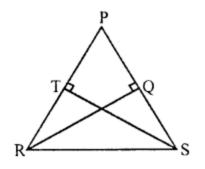
$$\Rightarrow$$
 70° =  $\angle$ 2 +  $\angle$ C =  $\angle$ C +  $\angle$ C = 2  $\angle$ C

$$\therefore \angle C = 70^{\circ}2 = 35^{\circ}$$

In ∆ABD,

$$\angle 1 + \angle B + \angle ADB = 180^{\circ}$$

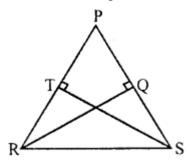
(sum of angles of a triangle)


$$\Rightarrow$$
  $\angle$ 2 +  $\angle$ B + 70° = 180° ( $\because$   $\angle$ 1 =  $\angle$ 2 =  $\angle$ C)

$$\Rightarrow$$
  $\angle$ C +  $\angle$ B + 70° = 180°

$$\Rightarrow$$
 35° +  $\angle$ B + 70° = 180°

$$\Rightarrow$$
 B = 180° – 105° = 75°  
Hence  $\angle$ ACD = 35° and  $\angle$ ABD = 75°


(b) In the given figure, if PR = PS, PT = PQ, ∠PTS = ∠PQR = 90°, prove that RQ = ST and RT = SQ.



[3]

Solution:

Given : In the figure, PR = PS, PT = PQ, ∠PQR = 90° and ∠PTS = 90°



To prove:

(i) RQ = ST

(ii) RT = SQ

Proof:

(i) In right  $\triangle PQR$  and  $\triangle PTS$ 

(c) I Find, 
$$a^2 + b^2 + c^2$$
 if  $a + b + c = 17$  and  $ab + bc + ca = 30$ .  
ii Find the products:  $(x + y)(x - y)(x^2 + y^2)$  [4]

Solution:

(i) 
$$a + b + c = 17$$
  
Squaring both sides,  
 $(a + b + c)^2 = (17)^2$   
 $\Rightarrow a^2 + b^2 + c^2 + 2$  ( $ab + bc + ca$ ) = 289  
 $\Rightarrow a^2 + b^2 + c^2 + 2 \times 30 = 289$   
 $\Rightarrow a^2 + b^2 + c^2 + 60 = 289$   
 $\Rightarrow a^2 + b^2 + c^2 = 289 - 60 = 229$ 

ii. 
$$(x + y) (x - y) (x^2 + y^2)$$
  
=  $[(x)^2 - (y)^2] (x^2 + y^2)$   
=  $(x^2 - y^2)(x^2 + y^2)$ 

 $a^2 + b^2 + c^2 = 229$ 

$$= (x^2)^2 - (y^2)^2$$
  
=  $x^4 - y^4$ 

(c) ABC is an isosceles triangle with AB=AC. Draw AP  $\perp$  BC to show that  $\angle$ B =  $\angle$ C. [2] Sol:

Given:  $\triangle ABC$  is an isosceles triangle with

AB = AC $AP \perp BC$ 

To prove :  $\angle B = \angle C$ 

Proof: In right ΔAPB and ΔAPC

Side AP = AP (Common)



Hyp. AB = AC

(Given)

 $\therefore \Delta APB \cong \Delta APC$ 

(RHS axiom)

 $\therefore \angle B = \angle C$ 

(c.p.c.t.)

- (d) Prove the following:
  - (i)  $log_{10} 4 \div log_{10} 2 = l0g_3 9$

(ii)  $\log_{10} 25 + \log_{10} 4 = \log_5 25$ 

[4]

Solution:

(i) L.H. 
$$S = log_{10} 4 - log_{10} 2$$
  
=  $log_{10} (2)^2 + log_{10} 2 = 2 log_{10} 2 + log_{10}' 2$   
=  $\frac{2 log_{10} 2}{log_{10} 2} = 2 (1) = 2$ 

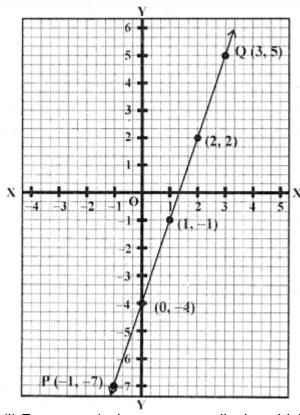
R.H.S. = 
$$\log_3 9 = \log_3 (3)^2 = 2 \log_3 3 = 2 (1) = 2$$

Hence, Proved. L.H.S. = R.H.S.

(ii) L.H.S. = 
$$\log_{10} 25 + \log_{10} 4 = \log_{10} 25 \times 4$$
  
=  $\log_{10} 100 = \log_{10} 10^2$   
=  $2 \log_{10} 10 = 2 \times 1$   
=  $2$  (:  $\log_a a = 1$ )  
R.H.S. =  $\log_5 25 = \log_5 (5)^2$   
=  $2 \log_5 5 = 2 \times 1 = 2$   
(:  $\log_a a = 1$ )

Hence L.H.S. = R.H.S.

- (c) Draw the graph of equation y = 3x 4. Find graphically
  - (i) the values of y, when x = -1.
  - (ii) the value of x when y = 5.


Sol: y = 3x - 4

Giving some suitable value to x, we get the corresponding values of y as shown below:

[4]

		, ,	
X	0	1	2
у	-4	-1	2

Now plot the points (0, -4), (1, -1) and (2, 2) on the graph and join than to get the required line



- (i) From x = -1, draw a perpendicular which meet the line at P. From P draw a line || to x- axis meeting y-axis at -7
  - $\therefore \text{ If } x = -1, \text{ then } y = -7$
- (ii) Similarly from x = 5, draw a perpendicular on y-axis which meets the line at Q From Q, draw perpendicular on x-axis meeting at 3

$$\therefore$$
 x = 3, y = 5

(a) If the mean of 
$$x$$
,  $x + 2$ ,  $x + 4$ ,  $x + 6$ ,  $x + 8$  is 24, find  $x$ . Solution:

[3]

Mean of 5 terms = 24

∴ Their total = 24 x 5 = 120

Now sum of mean = x + x + 2 + x + 4 + x + 6 + x + 8

= 5x + 20

 $\therefore 5x + 20 = 120 \Rightarrow 5.x = 120 - 20$ 

 $\Rightarrow$  5x = 100  $\Rightarrow$  x = 1005 = 20

∴ x = 20

**(b)** The sum of two numbers is 2. If their difference is 20, find the numbers. **Solution:** 

from equation (1) and equation (2), we get,

$$x + y = 2$$

$$x - y = 20$$

Adding, 2x = 22

$$\Rightarrow x = \frac{22}{2} = 11$$

Substituting the value of x in equation (1), we get

$$11+y=2 \Rightarrow y=2-11 \Rightarrow y=-9$$

Hence, the numbers are 11 and -9

(c) In what period will ₹ 12,000 yield ₹ 3,972 as compound interest at 10% per annum, if compounded on yearly basis?

[4]

Solution:

P = ₹ 12000

$$A = P \left( 1 + \frac{R}{100} \right)^n$$

**ICSESolutions.com** 

$$\Rightarrow$$
 15972 = 12000  $\left(1 + \frac{10}{100}\right)^n$ 

$$\Rightarrow \frac{15972}{12000} = \left(\frac{11}{10}\right)^n$$

$$\frac{1331}{1000} = \left(\frac{11}{10}\right)^n$$

$$\Rightarrow \left(\frac{11}{10}\right)^3 = \left(\frac{11}{10}\right)^n$$

*****